35 research outputs found

    Transformations of mercury in the marine water column

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2014Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research describing mercury methylation in anoxic sediments by anaerobic bacteria, mechanistic studies of water column methylation are severely limited. These essential studies have faced analytical challenges associated with quantifying femtomolar concentrations of the methylated Hg species dimethylmercury (DMHg) and MMHg in marine systems. In addition, the complex biogeochemical cycling of Hg in natural systems require consideration of gaseous, dissolved, and particulate species of Hg in order to probe potential controls on its ultimate transfer into marine food webs. The presented work provides a comprehensive study of Hg chemical speciation and transformations in Tropical Pacific waters. We developed an analytical method for MMHg determination from seawater that has the potential to ease measurements of MMHg distributions, as well as mechanistic studies of Hg species transformations. We used this method, in addition to previously established methods, to measure dissolved and particulate Hg species distributions and fluxes along a transect of the Pacific Ocean. Over significant gradients in oxygen utilization and primary productivity, we observed a region of methylated Hg species focused in the Equatorial Pacific that appeared spatially separated from higher concentrations in North Pacific Intermediate Waters. From the first full water column depth profiles of this region, we also observed the intrusion of elevated Hg into deep waters of the Equatorial and South Pacific Ocean. In addition we observed substantial potential rates of mercury methylation in subsurface and low oxygen waters along the Pacific transect as well as the Sargasso Sea using Hg isotope tracers. We observed dynamic production and decomposition of methylated Hg in low productivity waters, despite low ambient methylated Hg concentrations. From the addition of bulk organic matter as well as individual compounds important for methylation in anaerobic bacteria, we observe no simple limitation of Hg methylation in marine waters but highly dynamic conversion of Hg between methylated and inorganic species.OCE-1031271 8762690

    Determination of monomethylmercury from seawater with ascorbic acid-assisted direct ethylation

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2014. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 12 (2014): 1-9, doi:10.4319/lom.2014.12.1.We developed a technique to measure monomethylmercury (MMHg) concentrations from small volumes (180 mL) of seawater at low femtomolar concentrations using direct ethylation derivitization, decreasing the required volume by 90% from current methods while maintaining a 5 fM detection limit. In this method, addition of ascorbic acid before derivitization of MMHg allows for full recovery of MMHg from the seawater matrix without the need for sample distillation or extraction. The small sample size and relative ease of detection are ideal both for shipboard as well as shore-based measurements of preserved MMHg samples. Combined with shipboard determination of dimethylmercury (DMHg) and elemental mercury (Hg(0)), this method can be used to determine full marine mercury speciation.This research was supported by a National Science Foundation grant (OCE-1031271) awarded to C. H. L. and Mak Saito and a Graduate Research Fellowship awarded to K. M. M

    Dynamic mercury methylation and demethylation in oligotrophic marine water

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 6451-6460, doi:10.5194/bg-15-6451-2018.Mercury bioaccumulation in open-ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24h incubation periods were comparable to those previously published from Arctic and Mediterranean waters despite differences in productivity between these marine environments. In contrast to previous studies that have attributed Hg methylation to heterotrophic bacteria, we measured higher methylation rates in filtered water compared to unfiltered water. Furthermore, we observed enhanced demethylation of newly produced methylated mercury in incubations of unfiltered water relative to filtered water. The addition of station-specific bulk filtered particulate matter, a source of inorganic mercury substrate and other possibly influential compounds, did not stimulate sustained methylation, although transient enhancement of methylation occurred within 8h of addition. The addition of dissolved inorganic cobalt also produced dramatic, if transient, increases in mercury methylation. Our results suggest important roles for noncellular or extracellular methylation mechanisms and demethylation in determining methylated mercury concentrations in marine oligotrophic waters. Methylation and demethylation occur dynamically in the open-ocean water column, even in regions with low accumulation of methylated mercury.This work was funded by the National Science Foundation in a Chemical Oceanography Program Grant (OCE-1031271) awarded to Carl H. Lamborg and Mak A. Saito and a graduate student fellowship to Kathleen M. Munson

    Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 656–676, doi:10.1002/2015GB005120.The formation of the toxic and bioaccumulating monomethylmercury (MMHg) in marine systems is poorly understood, due in part to sparse data from many ocean regions. We present dissolved mercury (Hg) speciation data from 10 stations in the North and South Equatorial Pacific spanning large water mass differences and gradients in oxygen utilization. We also compare the mercury content in suspended particles from six stations and sinking particles from three stations to constrain local Hg sources and sinks. Concentrations of total Hg (THg) and methylated Hg in the surface and intermediate waters of the Equatorial and South Pacific suggest Hg cycling distinct from that of the North Pacific gyre. Maximum concentrations of 180 fM for both MMHg and dimethylmercury (DMHg) are observed in the Equatorial Pacific. South of the equator, concentrations of MMHg and DMHg are less than 100 fM. Sinking fluxes of particulate THg can reasonably explain the shape of dissolved THg profiles, but those of MMHg are too low to account for dissolved MMHg profiles. However, methylated Hg species are lower than predicted from remineralization rates based on North Pacific data, consistent with limitation of methylation in Equatorial and South Pacific waters. Full water column depth profiles were also measured for the first time in these regions. Concentrations of THg are elevated in deep waters of the North Pacific, compared to those in the intermediate and surface waters, and taper off in the South Pacific. Comparisons with previous measurements from nearby regions suggest little enrichment of THg or MMHg over the past 20 years.Financial support for this study was provided by the National Science Foundation in a grant from the Chemical Oceanography Program (OCE-1031271) to C.H. Lamborg and M.A. Saito and a Graduate Student Fellowship to K.M. Munson.2015-11-2

    Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Get PDF
    <div><h3>Background</h3><p>Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized <em>in vitro</em>, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for <em>in vitro</em> temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.</p> <h3>Methodology/Principal Findings</h3><p>Supragingival plaque samples from caries-free children incubated with <sup>13</sup>C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by <em>Lactobacillus</em> and <em>Propionibacterium</em> species, both of which have been previously found within carious lesions from children.</p> <h3>Conclusions/Significance</h3><p>Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.</p> </div

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Transformations of Hg in the marine water column

    No full text
    Thesis: Ph. D., Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014.Cataloged from PDF version of thesis.Includes bibliographical references.Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research describing mercury methylation in anoxic sediments by anaerobic bacteria, mechanistic studies of water column methylation are severely limited. These essential studies have faced analytical challenges associated with quantifying femtomolar concentrations of the methylated Hg species dimethylmercury (DMHg) and MMHg in marine systems. In addition, the complex biogeochemical cycling of Hg in natural systems require consideration of gaseous, dissolved, and particulate species of Hg in order to probe potential controls on its ultimate transfer into marine food webs. The presented work provides a comprehensive study of Hg chemical speciation and transformations in Tropical Pacific waters. We developed an analytical method for MMHg determination from seawater that has the potential to ease measurements of MMHg distributions, as well as mechanistic studies of Hg species transformations. We used this method, in addition to previously established methods, to measure dissolved and particulate Hg species distributions and fluxes along a transect of the Pacific Ocean. Over significant gradients in oxygen utilization and primary productivity, we observed a region of methylated Hg species focused in the Equatorial Pacific that appeared spatially separated from higher concentrations in North Pacific Intermediate Waters. From the first full water column depth profiles of this region, we also observed the intrusion of elevated Hg into deep waters of the Equatorial and South Pacific Ocean. In addition we observed substantial potential rates of mercury methylation in subsurface and low oxygen waters along the Pacific transect as well as the Sargasso Sea using Hg isotope tracers. We observed dynamic production and decomposition of methylated Hg in low productivity waters, despite low ambient methylated Hg concentrations. From the addition of bulk organic matter as well as individual compounds important for methylation in anaerobic bacteria, we observe no simple limitation of Hg methylation in marine waters but highly dynamic conversion of Hg between methylated and inorganic species.by Kathleen M. Munson.Ph. D

    Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic

    No full text
    Mercury (Hg) is a contaminant of major concern in Arctic marine ecosystems. Decades of Hg observations in marine biota from across the Canadian Arctic show generally higher concentrations in the west than in the east. Various hypotheses have attributed this longitudinal biotic Hg gradient to regional differences in atmospheric or terrestrial inputs of inorganic Hg, but it is methylmercury (MeHg) that accumulates and biomagnifies in marine biota. Here, we present high-resolution vertical profiles of total Hg and MeHg in seawater along a transect from the Canada Basin, across the Canadian Arctic Archipelago (CAA) and Baffin Bay, and into the Labrador Sea. Total Hg concentrations are lower in the western Arctic, opposing the biotic Hg distributions. In contrast, MeHg exhibits a distinctive subsurface maximum at shallow depths of 100–300 m, with its peak concentration decreasing eastwards. As this subsurface MeHg maximum lies within the habitat of zooplankton and other lower trophic-level biota, biological uptake of subsurface MeHg and subsequent biomagnification readily explains the biotic Hg concentration gradient. Understanding the risk of MeHg to the Arctic marine ecosystem and Indigenous Peoples will thus require an elucidation of the processes that generate and maintain this subsurface MeHg maximum

    Mercury Speciation and Mobilization in a Wastewater-Contaminated Groundwater Plume

    No full text
    We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg­(II) to Hg<sup>0</sup> within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone
    corecore