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Abstract 
 
 Methylation of mercury (Hg) in the marine water column has been hypothesized to serve 
as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to 
marine food webs. Despite decades of research describing mercury methylation in anoxic 
sediments by anaerobic bacteria, mechanistic studies of water column methylation are severely 
limited. These essential studies have faced analytical challenges associated with quantifying 
femtomolar concentrations of the methylated Hg species dimethylmercury (DMHg) and MMHg 
in marine systems. In addition, the complex biogeochemical cycling of Hg in natural systems 
require consideration of gaseous, dissolved, and particulate species of Hg in order to probe 
potential controls on its ultimate transfer into marine food webs. 
 The presented work provides a comprehensive study of Hg chemical speciation and 
transformations in Tropical Pacific waters. We developed an analytical method for MMHg 
determination from seawater that has the potential to ease measurements of MMHg distributions, 
as well as mechanistic studies of Hg species transformations. 
 We used this method, in addition to previously established methods, to measure dissolved 
and particulate Hg species distributions and fluxes along a transect of the Pacific Ocean. Over 
significant gradients in oxygen utilization and primary productivity, we observed a region of 
methylated Hg species focused in the Equatorial Pacific that appeared spatially separated from 
higher concentrations in North Pacific Intermediate Waters. From the first full water column 
depth profiles of this region, we also observed the intrusion of elevated Hg into deep waters of the 
Equatorial and South Pacific Ocean.  
 In addition we observed substantial potential rates of mercury methylation in subsurface 
and low oxygen waters along the Pacific transect as well as the Sargasso Sea using Hg isotope 
tracers. We observed dynamic production and decomposition of methylated Hg in low 
productivity waters, despite low ambient methylated Hg concentrations. From the addition of 
bulk organic matter as well as individual compounds important for methylation in anaerobic 
bacteria, we observe no simple limitation of Hg methylation in marine waters but highly dynamic 
conversion of Hg between methylated and inorganic species. 
 
 
Thesis Supervisor: Carl H. Lamborg   
Title: Assistant Scientist, Marine Chemistry and Geochemistry, Woods Hole Oceanographic 
Institution  
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Chapter 1 
Introduction 
 
 Monomethylmercury (MMHg, chemically: CH3Hg+) bioaccumulates in marine food 

webs and has deleterious effects on upper trophic levels of marine life by reducing fertility and 

offspring survival [Scheuhammer et al, 2007]. In humans, MMHg acts a neurotoxin, capable of 

crossing both the blood-brain and placental barriers and thereby poses a specific threat to fetuses 

and children [Clarkson and Magos, 2006]. Due to its toxicity, the Environmental Protection 

Agency among other health organizations have recommended maximum consumption levels of 

fish with high MMHg concentrations for children and expectant mothers [US FDA-EPA, 2009]. 

Despite these guidelines, it is estimated that 0.6-11% of US women ages 16-49 have blood 

mercury (Hg) levels above the recommended limit for safe exposure [Mahaffey et al, 2004]. 

Estimates of fish sources suggest that up to 90% of fish consumed in the US are from marine and 

estuarine environments [Sunderland, 2007]. As a result, understanding the factors that control 

MMHg sources and transfer in marine environments is crucial for minimizing potential health 

threats to humans and marine life.  

  

Mercury from Marine Waters to Biota 

 The need to quantify MMHg sources in natural waters is related to its uptake and transfer 

through marine trophic levels. Concentrations of dissolved MMHg in the open-ocean water 

column are typically <0.5 pM [Mason and Fitzgerald, 1990, 1993; Mason et al 1995, 1998; 

Sunderland et al, 2009; Cossa et al, 2011; Hammerschmidt and Bowman, 2012] but 

concentrations in fish tissue are in the range from 0.01 to >1000 µg/kg [Senn et al, 2010; Choy et 

al, 2009; Kraepiel et al, 2003]. Thus, Hg is bioaccumulated to a large degree through marine 

trophic levels. The most important step in the marine bioaccumulation of MMHg is related to the 

preferential retention of MMHg by phytoplankton [Mason et al, 1996]. In the example of Hg 

transfer between diatoms and the copepod grazers, Hg(II) was bound to the membrane of diatoms 

and is excreted rather than retained during feeding [Mason et al, 1996]. In copepods, the 

increased hydrophobicity of MMHg relative to Hg(II) that occurs upon the addition of the methyl 

group resulted in its preferential retention [Mason et al, 1996]. Bioaccumulation factors (BAF) 

measured in marine phytoplankton suggest that this initial step of trophic transfer is the most 

substantial, with BAF values of 104-107 [Baeyens, et al, 2003; Hammerschmidt and Fitzgerald, 

2006; Szczebak et al, 2011; Hammerschmidt et al, 2013]. The large magnitude of transfer 
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between MMHg dissolved in the water column and the base of the marine food chain illustrates 

the importance of the initial production and partitioning of MMHg between dissolved and 

particulate pools.  

 

Sources and Sinks of Marine Mercury  

 Marine cycling of Hg is linked to its behavior in the atmosphere. Mercury is highly 

volatile and also is found dissolved in water in its gaseous elemental form (Hg°). Emissions from 

coal burning, concrete production, gold amalgamation, and volcano outgassing are the primary 

sources of Hg° to the atmosphere [Streets et al, 2011]. Anthropogenic sources dominate the net 

release of Hg° by a factor of 3 since the beginning of the Industrial Revolution [Lamborg et al, 

2002]. Hg° can enter marine systems directly via gas exchange, but is primarily delivered by wet 

and dry deposition after Hg° is oxidized to Hg(II) in the atmosphere, resulting in significant 

changes to its sorption properties. Once deposited in the surface ocean, large proportions of Hg 

are re-emitted to the atmosphere due to reduction of Hg(II) to reform Hg°, extending the 

residence time of Hg in the atmosphere [Mason et al 1994; Sørensen et al, 2010].  

 Other potential sources of Hg to the oceans are limited in magnitude. Modeling studies 

have proposed that riverine contributions of Hg to global oceans are low due to coastal deposition 

of riverine sediment [Sunderland and Mason, 2007] although warming Arctic rivers are thought 

to release large amounts of Hg on a basin scale [Fisher et al, 2012]. Submarine groundwater 

discharge has been identified as a possible source of Hg but is also limited in its spatial scale 

[Bone et al, 2007]. Hydrothermal sources of Hg are also small compared to atmospheric sources 

[Lamborg et al, 2006].  

 The primary sink for Hg from the ocean is evasion to the atmosphere in the surface 

ocean, which can remove up to 80 % of deposited Hg(II) as a result of photooxidation in the 

surface ocean via gas exchange [Mason et al, 1994; Sorensen et al, 2010]. For Hg that is not 

evaded from the surface ocean, sorption, removal on sinking particles, and eventual burial in 

sediments are the primary sinks.  

 Mercury that remains in the water column serves as the pool for methylation reactions to 

produce MMHg. However, the sorption of Hg, either as Hg(II) or MMHg, onto particles 

decreases the dissolved pool and potentially impacts the production of MMHg, either by 

removing Hg(II) substrate or by providing a surface for methylation. Once buried, porewater 

diffusion of Hg is a small flux, into deep waters [Hammerschmidt and Fitzgerald, 2006], although 
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the measurements of fluxes differ greatly between those measured by benthic flux chambers and 

those calculated from porewaters [Hammerschmidt and Fitzgerald, 2008] and have not been 

measured in sediments from the deep ocean. 

 

Marine Mercury Distributions 

 Distributions of total Hg (THg) reveal the importance of atmospheric deposition as well 

as particle scavenging of Hg in the water column. Concentrations of THg are measurable in the 

surface ocean, generally < 1 pM in the Pacific [Laurier et al, 2004; Sunderland et al, 2009; Cossa 

et al, 2011; Hammerschmidt and Bowman, 2012], although substantially higher concentrations 

have been measured in the Atlantic [Mason et al, 1995; Mason and Sullivan, 1999]. 

Concentrations of THg generally increase with depth due to particle scavenging and release upon 

remineralization [Hammerschmidt and Bowman, 2012]. Deep waters, below 2000 m, often show 

substantial concentrations of THg that have been attributed to transport of THg via thermohaline 

circulation [Hammerschmidt and Bowman 2012].  

 Methylated Hg species, MMHg and DMHg, were first measured in the open ocean in 

1990 [Mason and Fitzgerald, 1990, 1993]. However, high limits of detection (~50 fM) prevented 

MMHg determination in ~70% of water samples analyzed in this early study [Mason and 

Fitzgerald, 1993]. Similar high detection limits hindered full Hg speciation determination in early 

measurements in the Mediterranean and North Atlantic [Cossa et al, 1997; Mason et al, 1998].  

 Despite the analytical challenges associated with MMHg determination, marine 

distributions of MMHg, either as a distinct species or in combination with DMHg, are found to be 

low in marine surface waters and elevated at depths of low dissolved oxygen concentrations in 

the water column [Mason and Fitzgerald 1990, 1993; Mason and Sullivan, 1999; Cossa et al, 

2009; Sunderland et al, 2009; Cossa et al, 2011; Hammerschmidt and Bowman, 2012]. These 

concentrations have been compared to rates of apparent oxygen utilization (AOU) in the water 

column, resulting in varied relationships between the two parameters [Mason and Sullivan, 1999; 

Sunderland et al, 2009; Cossa et al, 2011]. From these relationships a relatively simple model of 

Hg methylation has emerged. Hg methylation is thought to occur within the marine water column 

after the release of Hg(II) substrate from remineralized organic matter. This has been illustrated 

most clearly by the linear correlation between methylated Hg concentrations and organic carbon 

remineralization rate [Sunderand et al, 2009]. However, the mechanistic pathways of in situ 

methylation in marine environments have not been well characterized. 
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 From a combination of limited DMHg and MMHg distribution data and supporting 

laboratory experiments, Mason et al, proposed that marine MMHg is produced from the 

breakdown of DMHg [Mason and Fitzgerald, 1993]. More recently, direct production of MMHg 

from Hg(II) has been proposed as a significant source of MMHg in Arctic waters [Lehnherr et al, 

2011]. However, because many studies have not distinguished between the two organomercuric 

species, it is difficult to determine potential controls on the interconversion between DMHg and 

MMHg that results in MMHg availability for uptake through marine trophic webs.  

 The need for lower detection limits has been recognized as a significant hindrance to 

understanding MMHg production and breakdown in marine waters [Fitzgerald et al, 2007]. The 

recent development of a direct ethylation method for MMHg determination at sea [Bowman and 

Hammerschmidt, 2011] has improved the detection limit to ~5 fM but is not adaptable for 

preserving samples for shore-based analysis. Although methods with low femtomolar detection 

limits exist, including isotope dilution inductively coupled plasma mass spectrometry (ID-

ICPMS) and cold vapor atomic fluorescence spectrometry (CVAFS), they have relied on tedious 

separation techniques such as organic extraction [Bloom, 1989; Horvat et al, 1993] or distillation 

[Horvat et al, 1993] to isolate MMHg from the seawater matrix, hindering MMHg species 

distribution data. In addition, the preservation of samples with acid for shore-based laboratory 

analysis result in the breakdown of DMHg to MMHg, yields combined methylated Hg ([DMHg] 

+ [MMHg]) concentrations [Parker and Bloom, 2007] that hinder the mechanistic understanding 

of MMHg production. 

 

Marine Mercury Methylation  

 Despite the importance of marine Hg cycling to resulting MMHg concentrations in 

marine fish and implications for human health, our mechanistic understanding of the biological 

and abiotic factors that might contribute to MMHg production are based on substantial work in 

coastal and freshwater systems. Theses studies have identified several potential targets for studies 

of marine MMHg production, but few established connections between anaerobic bacterial 

methylation and in situ methylation in marine waters. 

 Sulfate-reducing bacteria (SRB) were identified as Hg methylators in sediments in the 

1980s [Choi et al, 1984a,b]. Subsequent work based on cultured organisms of SRB and iron-

reducing bacteria, especially Desulfovibrio and Geobacter species have provided much of the 

current knowledge of Hg methylation. Long suspected of involving a reaction by 
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methylcobalamin (vitamin b12) in the acetyl-CoA pathway [Choi et al,1984b; Ekstrom and 

Morel, 2008], methylation in a variety of delta-proteobacteria, methanogens, and firmicutes has 

recently been attributed to the presence of two genes, hgcA and hgcB encoding a cobalamin-

utilizing methyltransferase upstream of a ferrodoxin protein [Parks et al, 2013, Gilmour et al, 

2013].  

 In addition, culture-based experiments have provided insight into mechanisms of cellular 

uptake of Hg(II) substrate for methylation by anaerobes, including the role of low molecular 

weight thiol ligands such as the amino acid cysteine and glutathione [Schaefer and Morel, 2009; 

Schaefer et al, 2011]. These experiments have revealed a role of active Hg(II) uptake by 

methylating bacteria, possibly via low-specificity metal uptake pathways [Schaefer et al, 2011]. 

 MMHg production is also possible through abiotic mechanisms. Methylcobalamin, 

methyltin, and methyliodide are known to methylate Hg(II) in the absence of cells by the 

donation of their methyl groups [Maynard, 1932; Filippeli and Baldi, 1993]. Although laboratory-

based and theoretical studies have suggested abiotic methyaltion pathways may be significant 

sources of MMHg in marine waters [Celo et al, 2006; Jimenez-Moreno et al, 2013], no field-

based experiments have quantified their relative importance.  

 

Isotope Tracers of Mercury Transformations 

 The seven stable isotopes of Hg (Table 1) provide a means of tracing Hg chemical 

species transformations in natural systems. Such experiments fall into two broad categories:  

1. Measurements of mass dependent and mass independent Hg fractionation attributed 

to specific Hg species transformation, such as reduction, methylation, or ligand 

binding that are first characterized in controlled experiments and are then used to 

identify transformations from environmental samples [reviewed by Kritee et al, 

2013]. 

2. Tracer addition experiments in which one or more well-characterized isotopically 

enriched Hg species are added to incubations of water or sediment and 

transformation reactions are quantified from changes in the isotopic ratio of a species 

of interest [Hintelmann et al, 1995; Hintelmann and Evans, 1997; Hintelmann and 

Ogrinc, 2003] 
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 Stable Hg isotope signatures have been used to trace mechanisms of Hg transformations 

as a result of fractionation, both mass dependent fractionation and mass independent 

fractionation, that occur as a result of small differences in mass among Hg isotopes. Laboratory 

studies have been performed to measure fractionation during many abiotic and biotic Hg 

transformations, including photoreduction, photodemethylation, methylation by SRB, abiotic 

methylation and microbial reduction [Kritee et al, 2013]. However, these studies rely on well-

characterized mechanisms that can be controlled in laboratory conditions to measure changes less 

than 5 per mil between isotopes.  

 Thus far, mass independent fractionation has been found to occur only during 

photodemethylation and photoreduction [Bergquist and Blum, 2007], which results in unique 

isotopic signatures of the odd isotopes, 199Hg and 201Hg. Mass dependent fractionation has been 

measured in microbial mediated methylation, demethylation, and reduction reactions [Kritee et al, 

2007, 2008, 2009; Rodriguez-Gonzalez, 2009]. Fractionation has also been measured in abiotic 

transformations of Hg, including methylation by methylcobalamin at low pH [Jimenez-Martinez 

et al, 2013] and binding to ligands [Weiderhold, et al, 2010].  

 Blum et al, 2013 recently measured the isotopic composition of fish Hg from fish thought 

to feed at different depths in the water column. Measured δ202Hg and Δ201Hg values increased 

with feeding depth in nine fish tested [Blum et al, 2013]. The decreasing values of Δ201Hg were 

interpreted to represent the uptake of less photochemically processed MMHg with increasing 

feeding depth in the ocean. The decreasing values of δ202Hg were interpreted to represent a 

largely microbial process for methylation. Combined, these isotope signatures align with 

enhanced methylation of Hg by microbes at depth of net organic matter remineralization [Mason 

and Fitzgerald, 1993; Sunderland et al, 2009]. The use of isotope signatures to trace sources of 

Hg within food webs is intriguing. However, as Blum et al, 2013 note, the experimental values 

used to interpret the measured isotopic compositions have not been determined from marine 

systems. Furthermore, recent work has measured a similar extend of fractionation in abiotic Hg 

methylation by methylcobalamin as is seen in methylation by SRB [Jiminez-Martinez et al, 

2013]. Therefore, measured stable isotope signatures of Hg from marine systems, either Hg 

species in the water column or in marine biota, cannot be fully interpreted until the fractionation 

factor associated with different marine mechanisms can be measured individually.  

 Isotope tracer studies allow quantification of Hg species transformations without the prior 

identification of the mechanisms involved. However, because they rely on the addition of 
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isotopically enriched spikes of Hg species, isotope tracer studies can only be used to quantify the 

potential for a transformation to take place in the tested system, typically seawater or sediment. 

These experiments rely on the assumption that additions of Hg species produce responses that 

mimic those that occur in situ, but this assumption is subject to scrutiny. For example, in the 

potential methylation rate measurements presented in this work, we investigated whether delivery 

of Hg(II) by organic matter remineralization is the primary limitation of Hg methylation. Since 

additions of isotoptically enriched Hg(II) are necessary to measure methylation rates in these dual 

tracer experiments, relief of Hg(II) limitation is implicit in all our presented measurements. 

 Tracer experiments quantify Hg species conversions by monitoring the isotopic changes 

of a single Hg species over the course of an incubation period. Such quantification hinges on the 

ability to accurately distinguish between Hg species. Mass balance of Hg species is not typically 

measured during these experiments and yields of MMHg are determined relative to internal 

standard recovery [Hintelmann and Evans, 1997]. The use of isotope tracer experiments therefore 

depends on the selection of appropriate experimental conditions to probe mechanisms of Hg 

transformations. 

 

 The work presented in the following chapters aimed to fill a variety of gaps in our 

knowledge of mercury biogeochemistry in marine systems. Our approach was to improve MMHg 

measurement techniques in order to allow for better coverage of Hg distributions in marine 

systems, use these techniques to analyze spatial and temporal variations in Hg species 

distributions, and determine which environmental factors control MMHg production in the open 

ocean water column by dual isotope tracer experiments testing potential limitations of 

methylation in marine waters.  Together, our results provide important progress in determining 

both spatial variations in MMHg distributions as well as potential controls on their distributions.  

 Chapter 2 details a method for measurement of MMHg from small volumes of seawater. 

This method is adaptable to shipboard measurements as well shore-based determination of 

MMHg from preserved samples. When combined with purging of samples to remove DMHg 

from the sample volume, this method allows for easy distinction between these two Hg chemical 

species in open ocean environments. The method is also adaptable to hyphenated analysis, such 

as CVAFS-ICPMS methods for isotope tracer experiments presented in Chapters 3 and 5.  

 Chapter 3 presents potential methylation and demethylation rate measurements from the 

water colum of the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea. During two 
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cruises, we measured methylation and demethylation potential in oligotrophic waters from 

chlorophyll maximum and oxygen minimum depths. In our evaluation of measurements of 

transformations of isotopically enriched Hg species over the course of incubations, we discuss the 

relative importance of methylation and demethylation and the implied role of bacteria in water 

column methylation at this site.  

 Chapter 4 presents distributions of dissolved and particulate Hg between 17°N and 15°S 

in the Central Pacific Ocean along a transect of strong gradients in oxygen concentrations and 

utilization. In addition to providing information on potential sources and sinks of MMHg in these 

waters, the distribution data provide insight into the relative importance of spatial and temporal 

trends when viewed relative to the body open ocean Hg data currently available. 

 Chapter 5 presents Hg methylation potentials measured in waters collected from a subset 

of stations occupied for the speciation measurements shown in Chapter 4. In addition to 

methylation potentials in unamended waters, we also measured changes in methylation promoted 

by addition of organic matter. In measurements of methylation in both filtered and unfiltered 

water, we observe dynamic transformations between Hg(II) substrate and methylated Hg. The 

experiments described in this chapter are modeled after limitation measurements and are the first 

attempts to determine the controls on mercury methylation in the marine water column. 

 Appendix I provides explicit details of the analytical set up, data analysis, and example 

calculations for the linear matrix approach used in dual tracer CVAFS-ICPMS measurements of 

MMHg presented in Chapters 3 and 5.  
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Tables and Table Legends 
 
Table 1: Mercury stable isotopes and their natural abundances 
Isotope Abundance (%) 
196Hg 0.15 
198Hg 9.97 
199Hg 16.87 
200Hg 23.10 
201Hg 13.18 
202Hg 29.86 
204Hg 6.87 
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Abstract  
 We developed a technique to measure monomethylmercury (MMHg) concentrations 
from small volumes (180-mL) of seawater at low femtomolar concentrations using direct 
ethylation derivitization, decreasing the required volume by 90% from current methods while 
maintaining a <20 fM detection limit. In this method, addition of ascorbic acid prior to the 
derivitization of MMHg allows for full recovery of MMHg from the seawater matrix without the 
need for sample distillation or extraction. The small sample size and relative ease of detection is 
ideal both for shipboard as well as shore-based measurements of preserved MMHg samples. 
Combined with shipboard determination of dimethylmercury (DMHg) and elemental mercury 
(Hg(0)), this method can be used to determine full mercury speciation.  
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Introduction 

 Mercury (Hg) is a toxic metal with an organic monomethylmercury (MMHg) chemical 

form that bioaccumulates in aquatic food webs. At sufficiently high concentrations, MMHg 

toxicity can cause decreased fertility and offspring survival in the upper trophic levels of 

terrestrial and marine systems [Scheuhammer et al, 2007]. In humans, MMHg acts as a 

neurotoxin and can cause developmental defects to fetuses and small children [Clarkson and 

Magos, 2006].  Due to the importance of marine protein sources in human diets, efforts to 

improve our understanding of the production and distribution of MMHg in open-ocean systems 

have increased in recent decades.  However, until recently, descriptions of Hg cycling in marine 

systems have relied heavily on studies of coastal and sedimentary systems, in which higher 

MMHg concentrations are more easily measured.  

 Determination of monomethylmercury concentrations is analytically challenging due to 

its femtamolar concentrations in much of the open ocean [Cossa et al, 2011; Hammerschmidt and 

Bowman, 2012; Mason and Fitzgerald, 1993; Sunderland et al, 2009]. Analytical methods, based 

on ethylation, to quantify MMHg, including the US EPA Standard Method 1630, require 

separation of MMHg from its environmental matrix. Either solvent extraction {Bloom 1989; 

Horvat et al, 1993] or distillation [Horvat et al, 1993] methods are commonly used to isolate 

MMHg for analysis. Following separation, MMHg is volatilized through derivitizaton, most 

commonly by addition of the ethylating agent sodium tetraethylborate (NaTEB) to form gaseous 

methylethylHg. Preconcentration of gaseous methylethylHg is achieved through trapping onto a 

Carbotrap [Bloom, 1989] or Tenax [Bowman and Hammerschmidt, 2011] column before analysis 

by GC separation of the methylethylHg and gaseous diethylmercury produced from Hg(II) 

substrate in solution. Once preconcentrated, sub-pM concentrations of MMHg can be quantified 

by atomic fluorescence spectrometry (AFS) or isotope dilution inductively-coupled plasma mass 

spectrometry (ID-ICPMS).  

 Initial attempts to avoid either MMHg distillation or extraction steps by direct ethylation 

of MMHg with NaTEB were inefficient, recovering 5-60% of added MMHg [Horvat et al 1993]. 

However, a method has recently been developed to detect MMHg from direct ethylation of 2-L 

volumes of seawater [Bowman and Hammerschmidt, 2011]. This method is advantageous for two 

reasons. First, it requires a minimal amount of sample processing compared to MMHg distillation 

or extraction, which makes the technique amenable for ship-based analyses. Second, the method 

allows for quantification of both dissolved MMHg and the gaseous dimethylmercury (DMHg) 
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organomercuric chemical species in seawater. The 2-L sample bottles can be purged with 

nitrogen (N2) gas to measure DMHg concentrations in seawater prior to acidification and 

ethylation to volatilize MMHg. However, the 2-L sample volume can hinder shore-based analysis 

due to difficulties in sample transport and storage for high-resolution depth profiles. In addition, 

the efficiency of direct ethylation from seawater is variable, requiring careful consideration of 

appropriate standards for MMHg quantification [Bowman and Hammerschmidt, 2011]. 

 Prior to the development of the direct ethylation method, preservation of samples with 

acid for shore-based MMHg determination using distillation or extraction methods prevented 

separate determination of DMHg and MMHg since DMHg decomposes to MMHg within a 

matter of hours in acidic conditions [Parker and Bloom, 2007]. As a result, profiles of acid-

preserved samples cannot distinguish between the DMHg and MMHg organomercuric forms in 

their analyses and instead represent a combined ([DMHg + MMHg]) concentration [e.g., 

Sunderland et al, 2009].  

 Direct volatilization is also possible via hydride generation of mercury hydrides via the 

addition of sodium tetrahydridoborate (sodium borohydride) followed by collection on a cold-trap 

before analysis using AFS [Cossa et al, 2009]. Like other methods, hydride generation requires 

application at sea to distinguish between DMHg and MMHg. Otherwise, quantification of acid-

preserved samples yields combined ([DMHg] + [MMHg]) concentrations. However, liquid N2 is 

required to analyze the volatile mercury hydride compound. In addition, like the 2-L direct 

ethylation method, the mercury hydride method cannot be easily automated or adapted to in-line 

analysis for isotopic studies.  

 In order to address the limitations of current methods, we developed a method that 

improves the recently described direct ethylation method while simultaneously allowing for 

sample preservation. Ascorbic acid addition has been found to improve MMHg detection from 

distilled samples using US EPA Method 1630 [Tekran Instruments Corporation, 2011]. We 

therefore adapted the use of ascorbic acid to improve the low ethylation efficiency of MMHg 

from seawater samples observed using the direct ethylation method [Bowman and 

Hammerschmidt, 2011]. The method can be coupled with acidification and purging prior to 

MMHg derivatization to collect and quantify volatile DMHg as a distinct species [Lamborg et al., 

2012].  
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Materials and Procedures  

Plastic and Glassware 

 All plastic and glass bottles, tubing, and filter holders for water collection, reagents, and 

sample preparation were acid-washed in a class 100 clean room according to described protocols 

[Hammerschmidt et al., 2011]. Pre-filters for water filtration were combusted prior to use. 

Capsule filters were filled with 10% HCl, soaked for 24 hours, and rinsed with de-ionized water 

(>18 MΩ-cm; “MQ”) until the rinse water pH was >6. 

 Either 42-mL amber glass vials (I-CHEM™, Fisher) or 250-mL amber glass bottles (I-

CHEM™, Fisher) were used for MMHg analysis from 30-mL or 180-mL sample volumes, 

respectively. The sample volumes were chosen to maximize the MMHg signal detected from the 

purged sample while maintaining adequate headspace for appropriate positioning of the 

instrument’s dual sample purge and analyte inlet needle (see below) above the height of the 

liquid. New Teflon backed septa (SunChem™) were soaked in Citranox™ (1%) overnight and 

10% HCl for >24 hours, then rinsed with MQ prior to use. Previously pierced septa were reused 

after soaking in Citranox™ (1%) overnight and up to 6 days in 10% HCl and rinsed with MQ 

prior to use.  

 

Seawater 

 Seawater used for method development was collected from the Equatorial Pacific Ocean 

in October 2011 on board the R/V Kilo Moana and from Vineyard Sound in Woods Hole, MA 

intermittently between November 2011 and March 2012.  Open-ocean seawater was collected in 

acid-rinsed X-Niskin bottles on a dedicated trace-metal clean rosette deployed on Amsteel line. 

Seawater was filtered (47mm, Supor polycarbonate membrane, 0.2-µm pore size, Pall 

Corporation) from X-Niskin bottles that were pressurized with ultra high purity N2 in a positive 

pressure, HEPA-filtered bubble constructed onboard the ship. Water was decanted into acid-clean 

10-L polyethylene carboys and stored at room temperature until use. Vineyard Sound coastal 

seawater was collected in acid cleaned 2-L Teflon bottles mounted on a pole sampler from the 

shore at the Quissett Campus of the Woods Hole Oceanographic Institution. Water was filtered 

with a GF/A pre-filter (42-mm Whatman) and a 0.2-µm Sterivex-GV™ (Millipore) filter. 
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Monomethylmercury Determination 

 MMHg was determined by CVAFS gas chromatography with a Tekran 2700 Automated 

Methyl Mercury Analysis System (Tekran, Ontario, Canada). The system is designed to 

determine MMHg from 30-mL samples of freshwater. Samples are analyzed using an 

autosampler that features a septa-piercing needle equipped with a purge gas outlet and a sample 

inlet. After piercing the septum, Ar flow through the tip of the needle purges the sample and 

allows the loading of gaseous methylethylHg through the sample inlet until the needle withdraws 

from the sample vial. The dual purging and loading allows for in-line loading of the Tenax 

column (Supelco) and separation of derivitized Hg species through a GC column. 

 In the manufacturer set-up of the instrument, an event table file (ETF) is used to automate 

sample purging followed by loading and heating of the Tenax trap and GC column via a sequence 

of valve activation and deactivation. Gaseous species of Hg are purged from the sample at 

controlled flow rates  (82, 120 or 152 mL/min) and loaded onto a Tenax trap at 31°C while 

bypassing the GC column, which has a separate continuous flow of Ar. During the desorption 

state, the valve between the Tenax trap and the GC column is opened, the Tenax trap is heated to 

180°C, and the desorbed Hg derivatives are carried from the Tenax trap to the GC column 

(85°C).  The chromatographically separated mercury species are fully combusted in a quartz 

pyrolysis column (720°C), combined with an Ar make up gas, and quantified by AFS. The Tenax 

trap and GC column are heated between sample loadings to avoid carryover between samples. 

The resulting chromatograph displays separate peaks of Hg(0), methylethylHg, and diethylHg, of 

which the methylethylHg peak can be quantitatively integrated to determine MMHg 

concentration.  

 Modifications of factory-installed software and hardware are necessary in order to detect 

MMHg from 180-mL of seawater using the Tekran 2700. The autosampler comes equipped with 

3 trays that each hold 21 42-mL sample vials that correspond to pre-set autosampler positions. 

Although the autosampler has alternative settings for smaller sample vial sizes, there is no pre-

installed set up for sufficiently large volume samples for seawater detection. Therefore, a custom 

foam and cardboard tray that accommodates 250-mL volume bottles was designed for bottle 

positions that correspond to vial positions that are pre-set for the autosampler configuration for 3 

trays of 40 sample vials. In order to accommodate the differences in height between the 42-mL 

and 250-mL sample bottles, the z-axis height setting of the dual purge/inlet needle was adjusted 
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from 14700 mm to 13400 mm to keep the sampling inlet in the headspace during sample loading. 

In addition, the vial stopper was adjusted to allow clearance over the height of the bottles. 

 In order to maximize the signal, the flow rate of Ar gas for sample purging and the 

sample purging time were increased. The Ar gas flow was modified from manufacturer’s 

installation by replacing the original 82-mL/min flow restrictor with a 152-mL/min flow 

restrictor. In addition, a new ETF was created that extended the sample purge time from 4 min to 

8 min. As with the recommended configuration for analysis of 30-mL samples of freshwater, the 

gas stripping of MMHg from the 180-mL samples is not complete despite the extended purge 

time, but approaches 80% after 8 min. This extended purge time was chosen as a balance between 

maintaining the shortest possible analysis time, minimizing the amount of moisture that is forced 

onto the Tenax column, and maximizing the MMHg signal. 

 

Standard and Sample Preparation 

 Acetate and citrate buffers, KOH, and sulfuric acid, were stored in acid-cleaned Teflon 

bottles. Solutions were remade as needed and to address any contaminants detected from reagent 

blanks. 

 For standard curve preparation, secondary stocks of 50 pM were prepared from dilution 

of concentrated MMHg primary stock (Alfa Aesar, 1000 ppm methylmercury chloride in water) 

in MQ and acidified to 0.25% HCl (concentrated, SEASTAR™ Chemical) to prevent loss of 

analyte to sides of the glass bottle. Standard curves ranging from 10 fM to 1000 fM were 

prepared daily from the secondary stock in MQ, filtered Equatorial Pacific seawater, and filtered 

Vineyard Sound seawater. MMHg was equilibrated with ambient ligands for at least 24 hours 

prior to further processing.  

 After equilibration, all samples and standards were acidified to a final concentration of 

0.5% with concentrated sulfuric acid (Fisher, TM Grade) to extract MMHg from the seawater 

matrix and allowed to react for 24 hours prior to ethylation (Bowman and Hammerschmidt, 

2011). Ascorbic acid (2.5% wt:vol in MQ, Fisher) was added to each sample prior to ethylation. 

Sample pH was then adjusted to 5 with KOH (45% wt:vol in MQ, Fisher). Sample pH was 

determined by testing 20 µL volumes of sample on pH strips (MColorpHast range 4.0-7.0, EMD 

Millipore). Neutralized samples were buffered with either acetate buffer (2M sodium acetate, 

Fisher; adjusted to pH 5 with H2SO4, conc. Fisher) or citrate buffer (1M sodium citrate Fisher; 

adjusted to pH 5 with H2SO4, conc. Fisher) according to sample size (Table 1). Sodium 
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tetraethylborate (NaTEB, Strem Chemical) was dissolved (1% final wt:vol) in pre-chilled 2% 

KOH in MQ and quickly aliquoted into 10-mL Teflon vials and kept frozen until use. For sample 

ethylation, an aliquot of NaTEB was thawed just until it formed a slush and was added to the 

buffered sample. Samples were then capped with Teflon-backed septa and inverted 10 times. The 

ethylation reaction was allowed to proceed for at least 20 minutes prior to initiating analysis.  

 Samples bottles were loaded into either the 42-mL vial tray provided by the manufacturer 

or the custom 250-mL bottle foam tray. Samples were analyzed after standards showed a linear 

relationship and peak area values for standards could be distinguished from those of reagent 

blanks (3x the standard deviation of triplicate regent blanks). Since the custom tray 

accommodates a maximum of 11 sample bottles, sets of 8-11 samples were typically prepared 

and all were analyzed within 4 hours of ethylation. 

 

Assessment 

 The development of the presented method was focused on achieving two goals. First, we 

attempted to lower the detection limit of the automated method to adequately measure the low 

femtomolar concentrations of MMHg in open-ocean water. We did this by increasing the total 

sample volume from 30-mL to 180-mL as well as increasing total purge flow for larger sample 

volume by lengthening the purge time as well as increasing the Ar purge rate. 

 Second, we sought to improve the efficiency of MMHg extraction from the saltwater 

matrix. This was accomplished by the addition of ascorbic acid, which allowed for full extraction 

of added MMHg from seawater. We also replaced the acetate buffer commonly used in MMHg 

determination methods with citrate buffer in order to reduce signal inconsistencies that we 

observed after making alterations to the instrument method. 

 

Sample Volume Adjustment 

 Using the instrument as designed with 30-mL sample volumes of seawater, the detection 

limit of 100 fM, as calculated from 3x the standard deviation of the blanks, was insufficient for 

low open-ocean MMHg concentrations, typically <100fM in the upper water column [Cossa et al, 

2011; Hammerschmidt and Bowman, 2012; Mason and Fitzgerald, 1993; Sunderland et al, 2009]. 

The modification of the instrument to accommodate an increase in sample volume to 180-mL 

resulted in a daily detection limit of ~5 fM, from triplicate reagent blanks, which was sufficient 

for most depths within the open-ocean water column. This detection limit is on the same order of 
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magnitude as that of the recently described 2-L direct ethylation method [Bowman and 

Hammerschmidt, 2011] while decreasing the required volume by 90% and allowing the process 

to be automated. 

 

Ar Purge Rate and Purge Volume 

 Unlike alternative analytical methods, the Tekran automated instrument used in this study 

does not completely purge MMHg from the sample. Instead, a purge time of up to 4 min is 

recommended for MMHg determination from freshwater samples for adequate mercury species 

separation. However, we observed a methylation artifact when using a 4 min purge time with 

180-mL sample volumes. This artifact appeared after repeated analyses of individual acetate 

buffered samples and produced MMHg signals ranging between 73-477% (n=5) of the initial 

MMHg signal (Figure 1, A). The artifact was most pronounced in samples and standards with 

MMHg concentrations near 15 fM (Figure 1, B). We increased the purge time to 8 min in order to 

extract a higher proportion of the MMHg present in samples. The increased purge time resulted in 

a predictable decrease in measured MMHg from the first purge to the second but not in 

subsequent purges of an individual standard buffered with acetate (Figure 1, C). It is important to 

note that this artifact was not the result of MMHg carry over from previously analyzed samples. 

MMHg concentrations measured from blanks run between repeated purging of individual samples 

or standards were not elevated (<DL). Because acetate buffers are known to produce MMHg 

when exposed to light (e.g., Falter, 1999), we sought to avoid the apparent MMHg production in 

acetate buffered samples by using citrate buffer (see below).   

 Although we increased both the Ar purge rate and the Ar purging time, it is important to 

note that increasing the Ar purge rate from 80-mL/min to 120-mL/min produced only a modest 

increase in the MMHg sample signal of ~5% (n=5) from 30-60 mL sample volumes. However, 

the increase in total purge time from 1 min 45 sec to 4 min increased the MMHg sample signal by 

25% (n=5). The difference between the effectiveness of changing the purge rate versus the total 

purge time may be attributed to the increase in gas pressure in the headspace above the aqueous 

sample and therefore a decrease in the volatilization of methylethylHg. While the MMHg signal 

was less sensitive to increases in the Ar purge rate than to increases in the sample volume, the 

increased purge rate combined with the increased length of the purge allowed for samples to be 

processed in a relatively high throughput manner while still retaining low femtamolar detection 

limits. 
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Determination of Reagent Blanks 

 Due to low MMHg concentrations present in open-ocean seawater, it is important to 

quantify the Hg species content of reagent blanks and take steps to minimize contamination. MQ 

in our laboratory often has measurable MMHg and Hg(II) concentrations that would hinder 

analysis of low seawater concentrations. As a result, we used two methods to quantify MMHg in 

the reagent blanks. First, MQ was exposed to ambient outdoor UV in 2-L Teflon bottles for 7-10 

days until the concentration of MMHg in the water was negligible (<3 fM) and this water was 

then used to prepare reagent blanks. Alternatively, in order to check the MMHg contribution of 

the reagents to the total signal from blanks, the reagents prepared in lab MQ were added in 

increasing amounts (e.g., 1x, 2x and 3x above those values in Table 1) and were determined as 

the MMHg signal above the MQ water background (Figure 2). 

 The precision of the standard curves was determined daily to have an average relative 

standard deviation from 4 replicate standards of 6% (range: 4-9%) during method development. 

Generally, the slope of the standard curve was also consistent from day to day. Over a 14-day 

period, the average slope of daily standard curves of MMHg peak area versus the amount of 

MMHg added (fM) averaged 2.61 (± 0.31) area units per fM Hg for 180-mL volume standards. 

Differences in the slopes between standard curves prepared with MQ and those prepared with 

filtered seawater were similar, varying between -12% to +16% (n=3; Figure 5) for 180-mL 

volumes without the need to adjust for reduced ethylation efficiency due to the seawater matrix. 

As a result, standard curves prepared in MQ can be used for quantification of MMHg 

concentrations. 

 

Ascorbic Acid Addition 

 The addition of ascorbic acid dramatically improved the extraction of MMHg from the 

seawater matrix. Extraction of MMHg standard from MQ averaged 34% (range: 2.7-81%, n=10) 

and improved to 97% (range: 86-109% n=7) when ascorbic acid was added (Figure 3). Although 

the mechanism by which MMHg recovery was improved is unknown, the function of ascorbic 

acid to overcome seawater matrix effects is affected by neither the order of reagent addition nor 

the length of time that ascorbic acid is allowed to react with the seawater sample. The increased 

extraction efficiency rendered by ascorbic acid yielded 98% recovery of equilibrated MMHg 

standard spikes from 30-mL volumes of filtered seawater within the 20-min reaction time allowed 

for the ethylation reaction (range: 81-128%, n=15). Exposing the sample to additional 
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manipulation by first adding ascorbic acid, resealing the sample bottle, incubating for 12 hrs, and 

then adding the remaining reagents yielded an average of 130% recovery (range: 104-155%, n=8) 

of added MMHg standard. In addition, recovery of MMHg from previously purged filtered 

seawater to which no ascorbic acid was added was enhanced, from 34% to 70% (range: 61-71%, 

n=2) compared to unpurged filtered seawater (Figure 3). This suggests that a volatile, oxidizing 

component of seawater may be the source of interference that inhibits extraction of MMHg from 

the seawater matrix.  

 Addition of ascorbic acid to samples prior to ethylation also greatly improved the 

effective lifespan of NaTEB. Previous studies have found that NaTEB quickly loses its ethylation 

ability in a matter of days, even when kept frozen in individual aliquots until use [USEPA, 2001; 

DeWild et al, 2002; Lamborg et al, 2012]. The addition of ascorbic acid extended the ethylation 

capacity of NaTEB. Individual aliquots of NaTEB were stable through several freeze and thaw 

cycles over weeks of analyses without noticeable changes in the ability to ethylate MMHg 

standards. Dissolved NaTEB stored frozen (-20°C) for > 2 months maintained its ability to 

ethylate MMHg equilibrated in filtered seawater (~88% recovery of added MMHg; n=2; Figure 

4).  This suggests that the perceived instability of NaTEB is not due to chemical breakdown from 

oxidation during storage, but is instead a result of interferences with the ethylation reaction by 

some component of either the seawater matrix or a breakdown product of NaTEB itself. 

 

Citrate Buffering 

 Contamination from reagents can be minimized through the use of trace metal grade 

acids and bases. However, the organic acid buffers can contribute a significant amount of MMHg 

contamination to sample signals. In initial attempts to reduce this contamination, NaTEB was 

added to the acetate buffer, allowed to react at room temperature for 20 min, and purged with Hg-

free N2 at 0.5-L/min for 30 min to remove MMHg and inorganic Hg species. However, upon 

analysis, it was discovered that this daily addition of NaTEB and purging of the acetate buffer 

contributed to an in-growth of MMHg observed with subsequent purges of individual 

samples/standards (Figure 1). As a result, we replaced the acetate buffer with citrate buffer to 

avoid similar production of MMHg during analysis. Although the citrate buffer has a higher 

concentration of MMHg contamination, ranging between 5 and 73 fM (n=15) compared to less 

than 5 fM in acetate buffer, the contamination from the citrate buffer did not appear to increase 

with time or exposure to light. Repeated purging of citrate buffered samples for 8 minutes also 
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resulted in a predictable decrease in the MMHg peak area averaging 77% of its previous value 

(range: 74-82%, n=6) without the MMHg in-growth observed with acetate buffered MMHg 

concentrations <15 fM.   

 In addition to the greater MMHg contamination found with citrate buffer, its use 

decreased the sensitivity of the MMHg detection, calculated from the slope of the MMHg peak 

area versus concentration of added MMHg standard, to 45% that of acetate buffered standards at 

a flow rate of 82-mL/min. However, at the higher 152-mL/min flow rate, the slope of the citrate 

buffered standards is 77% that of acetate buffered standards (Figure 2). 

 

Discussion 

 Direct ethylation of MMHg has provided a means to vastly improve the understanding of 

Hg speciation in marine systems, especially the organomercuric species DMHg and MMHg, 

which are present in low femtomolar concentrations in the open-ocean water column [Cossa et al, 

2011; Hammerschmidt and Bowman, 2012; Mason and Fitzgerald, 1993; Sunderland et al, 2009]. 

Because sample preservation with acid leads to the demethylation of DMHg to MMHg [Parker 

and Bloom, 2005], a method capable of distinguishing between these two organomercuric species 

is essential to understand the partitioning of Hg species. Although the direct ethylation method 

provides a promising alternative to sample distillation, the seawater matrix presents interferences 

that can lower ethylation efficiency.  

 Although the addition of ascorbic acid does not lower the detection limit (~5 fM) 

compared to the current method of direct ethylation of MMHg from sweater (Bowman and 

Hammerschmidt 2011), complete recovery of MMHg from the seawater matrix is advantageous 

for two reasons. First, the ethylation enhancement observed using ascorbic acid, presumably due 

to its function as a mild reductant, may occur to unknown degrees in seawater samples, 

depending on their concentrations of naturally occurring reductants. As a result, without complete 

MMHg extraction, relative concentrations between seawater samples may reflect differences in 

ethylation efficiency due to the composition of the seawater matrices rather than differences in 

MMHg concentrations. Second, the increased ethylation efficiency observed in pre-purged 

seawater (Figure 3) can potentially overestimate the assumed ethylation efficiency when MMHg 

standard curves are prepared in purged samples [Bowman and Hammerschmidt, 2011]. 

 Preservation of open-ocean seawater samples can be essential for mechanistic studies of 

mercury species cycling in ocean environments. Thus, the presented ascorbic acid-assisted direct 
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ethylation method has been developed to allow for both ship-based and lab-based MMHg 

measurement. In combination with ship-based measurement of DMHg from untreated seawater 

prior to preservation with H2SO4, this method overcomes major restrictions faced while using 

many of the current methods used for MMHg analysis.  In addition, our semi-automated method 

can improve throughput for linked anaylsis, such as CVAFS-ICPMS for mechanistic studies 

using additions of stable Hg isotopes [Monperrus et al, 2007; Lehnherr et al, 2011]. 

 

Comments and Recommendations 

 We developed the described method specifically to reduce the required volume needed to 

measure MMHg from seawater while maintaining a minimal amount of sample manipulation. 

The addition of ascorbic acid enables complete extraction of low open-ocean concentrations of 

MMHg from seawater matrices. Complete extraction is important for avoiding potential biases in 

MMHg determination that may result from changes in ethylation efficiency caused by differences 

in seawater matrix composition between samples. 

 Direct methylation from Hg(II) has recently been revealed as a potentially significant 

source of MMHg in the marine water column [Lehnherr et al, 2011; Sunderland et al, 2009]. 

However, MMHg may also be produced from the abiotic degradation of highly photolabile 

DMHg [Mason et al, 1995]. Since we developed this method to measure MMHg from acid-

preserved samples that were stripped of DMHg before preservation, we have not run standard 

curves to quantify the DMHg detected by the Tekran 2700. Thus, we recommend that the 

described method be used in conjunction with ship-based measurements of DMHg for full 

dissolved Hg speciation analysis [Bowman and Hammerschmidt 2011; Lamborg et al, 2012].  

 Although our method was developed using one of two commonly used commercially 

available MMHg auto analyzers, the addition of ascorbic acid can be adapted to existing manual 

methods in order to minimize matrix effects during analysis.  
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Figures and Figure Legends 

Figure 1: Increases in measured MMHg, relative to the initial MMHg measured, was observed 
during repeated analysis of individual seawater samples buffered with acetate buffer (180-mL) 
(A). Similar variability was observed in acetate-buffered standards of 25 fM MMHg added to 
filtered seawater using a 4-minute Ar purge in the analytical method (B). Extending the Ar purge 
time of acetate-buffered standard to 8 minutes failed to alleviate this variability (C). Quantitative 
stripping of MMHg was observed from citrate-buffered standards using an 8-minute Ar purge 
(D). 
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Figure 2: Comparison of standard curves of instrument MMHg peak area versus added MMHg 
standard (5-100 fM) prepared with acetate buffer and citrate buffer. Citrate buffered standards 
yield less sensitivity as observed from the lower slope of the standard curve. By increasing the 
rate of the Ar purging during sample analysis by replacing the 82-mL/min flow restrictor with a 
152-mL/min flow restrictor, the sensitivity of the citrate-buffered standard curve approaches that 
of the acetate-buffered standard curve.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   45	
  

Figure 3: Percent recovery of added MMHg standard (0.02-1ppt) equilibrated for 24 hours in 
filtered Vineyard Sound seawater measured by direct ethylation. In the absence of ascorbic acid 
(left) the recovery of MMHg is generally less than 40%. Purging of filtered seawater prior to 
MMHg standard addition (center) may increase the recovery. The addition of ascorbic acid (right) 
yields significantly greater recovery from seawater not purged before standard addition  (p < 
0.005). 
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Figure 4: Representative standard curve of instrument MMHg peak area versus added MMHg 
standard (15-250 fM) from 180-mLvolumes used to quantify seawater samples. Four replicates of 
25 fM are shown and are used to calculate standard variability. Inset: MMHg blank in reagents is 
calculated from the slope of the linear fit obtained from the instrument MMHg peak area versus 
stepwise increases in reagent concentrations 
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Figure 5: Recovery of added MMHg standard from de-ionized water (MQ) and filtered Vineyard 
Sound seawater (FSW) using ascorbic acid assisted direct ethylation. Instrument MMHg peak 
areas are corrected for reagent blanks measuring from each of the corresponding sample matrices. 
The addition of ascorbic acid to the FSW prevents the need for correcting for low ethylation 
efficiency from direct ethylation of seawater. Although open-ocean concentrations of MMHg are 
generally well below 1000 fM, standards show similar recovery from FSW and MQ beyond the 
range required for determining ocean MMHg concentrations. 
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Tables and Table Legends 

Table 1: Reagents optimized for 30-mL and 180-mL sample volumes. Acetate buffer (2M) was 
used initially as outlined in USEPA Standard Method 1630. However, citrate buffer (1M) 
replaced acetate buffer for low concentration seawater samples to eliminate ingrowth of MMHg 
in samples upon repeated analytical runs of the same samples.   
 
Final Sample 
Volume (mL) 

Detection 
Limit (fM) 

Ascorbic Acid 
(µL) 

2M Acetate 
Buffer (mL) 

1M Citrate 
Buffer (mL) 

NaTEB (µL) 

30 100 50 0.225 0.55 30 
180 5 300 1.0 2.0 85 
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Chapter 3 
Methylation and Demethylation of Mercury in the Sargasso Sea 
 
Abstract 
 We measured potential rates of mercury methylation and demethylation at the Bermuda 
Atlantic Time-series Study (BATS) site during the spring bloom and fall within a single calendar 
year. Bottle incubations of filtered and unfiltered seawater reveal active methylation and 
demethylation within the chlorophyll maximum and the oxygen minimum zone at the BATS site, 
resulting in specific methylation rate constant (km) values between 4.58-5.17 (% d-1) in April and 
0.22-0.61 (% d-1) in October. We observed no clear enhancement of methylation in unfiltered 
waters during 24-hour incubations in April compared to filtered controls. Higher resolution 
measurements over the 24-hour incubation period in October revealed highly dynamic 
methylation and demethylation despite small net changes over the total incubation period. In 
waters from the chlorophyll maximum depth, concentrations of methylated mercury (MeHg) 
produced from inorganic mercury (Hg(II)) spike additions reached a maximum within 4 hours 
and decreased throughout the remainder of the incubation period. The transition from net 
methylation to net demethylation was enhanced by the presence of particles. In contrast, 
unfiltered waters from the oxygen minimum depth showed continual methylation over the course 
of 24-hour incubations.  
 Demethylation measured during April show enhanced demethylation in unfiltered water 
compared to filtered water. Overall rates were comparable to those measured in marine Arctic 
and Mediterranean waters. Demethylation rates were enhanced within the oxygen minimum 
region. However, we could not make quantitative comparisons of demethylation rates between 
April and October because of rapid demethylation of the monomethylmercury (MMHg) spike that 
occurred at the beginning of the October incubation. 
 These results show that methylation does take place in oligotrophic marine waters despite 
low standing concentrations of methylated mercury species. In addition, methylated mercury 
concentrations in marine waters may be largely controlled by rates of demethylation, rather than 
methylation in the open-ocean water column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   50	
  

Introduction 

 Despite the importance of marine fish for human consumption [Sunderland, 2007] and 

the potential health risks posed by exposure to high concentrations of mercury (Hg) [Clarkson 

and Magos, 2006], little is known about the potential for Hg methylation in the marine water 

column. This is important to explore as monomethlymercury (MMHg) is the chemical species of 

Hg that bioaccumulates in marine food webs. Measurements of methylation within the marine 

water column have been performed in a limited number of marine sites, largely limited to coastal 

and semi-coastal locations within the Canadian Arctic Archipelago [Lehnherr et al, 2011] and the 

Mediterranean Sea [Monperrus et al, 2007]. Experiments at these sites have found significant 

production of MMHg in seawater and have suggested that observed methylation may be driven 

by microbial processes [Monperrus et al, 2007]. 

 The impact of changing anthropogenic emissions of Hg on ocean Hg distributions and 

resulting bioaccumulation is the central question for potential mitigation strategies [Krabbenhoft 

and Sunderland, 2013]. A decreasing trend in total Hg (THg) concentrations has been suggested 

for North Atlantic water due to decreases in European and North American Hg emissions [Mason 

et al, 2012]. Recent compilations of atmospheric and surface ocean Hg measurements and model 

results have proposed the net evasion of anthropogenic mercury from the North Atlantic surface 

ocean [Sørensen, et al 2010, Sørensen et al, 2012], which might enhance surface water depletion 

of THg. However, few water column measurements of Hg species concentrations have been made 

repeatedly at open ocean sites in the North Atlantic over the past 3 decades. In addition early 

measurements of Hg may be subject to contamination [e. g. Gill and Mason (2005) as shown in 

Mason et al, 2012] and recent intercalibration for total Hg (THg) determination show that modern 

analyses have low consistency, ~40%, among participating laboratories [Lamborg et al, 2012]. 

Despite the difficulty in determining temporal trends in THg distributions, concentrations of the 

bioaccumulating MMHg in the North Atlantic depend on the dynamic cycling of Hg species 

within the water column. At any depth, measured MMHg concentrations can potentially result 

from Hg(II) substrate delivery via sinking particulate matter to zones of net remineralization, 

advective transport from sedimentary sources, in situ production within the water column, and 

loss processes such as demethylation and particle scavenging [reviewed by Mason et al, 2012]. In 

North Atlantic waters, MMHg composes a small percentage, generally <10%, of THg and is often 

decoupled from THg concentrations [Bowman et al, 2013]. As a result, in order to determine 

whether North Atlantic MMHg concentrations are decreasing with lowered regional emissions, 
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and, as a result, whether MMHg available for bioaccumulation in marine food webs is changing 

over time, it is important to determine the controls on methylation in these marine waters.  

 Early studies of MMHg distributions and stability in marine waters proposed that MMHg 

is produced from the breakdown dimethylmercury (DMHg) that is directly formed from microbial 

methylation of Hg(II) [Mason and Fitzgerald, 1993]. Subsequent measurements of dissolved Hg 

species in surface and intermediate waters have observed correlations between concentrations of 

methylated Hg species (DMHg and/or MMHg) and rates of oxygen utilization [Sunderland, et al, 

2009; Cossa et al, 2011]. As a result of these observations, methylation rates are thought to be 

limited by the rate of Hg(II) substrate delivery from remineralization of sinking organic matter 

[Sunderland et al, 2009]. Potential Hg methylation and demethylation rates from the sites in the 

Mediterranean and the Canadian Arctic Archipelago have demonstrated the complexity of 

MMHg and DMHg formation and degradation in marine waters. Methylation rates appear 

significant not only in waters of net remineralization, but also in euphotic waters where 

methylated Hg concentrations are typically lower [Monperrus et al, 2007; Lehnherr et al, 2011]. 

In these upper water column depths, methylated Hg species may be controlled by demethylation 

processes that are absent deeper in the water column, such as photodemethylation [Whalin et al, 

2007; Monperrus et al, 2007; Lehnherr et al, 2011]. 

 However, methylation rates in surface waters may also be influenced by primary 

productivity. Coastal waters of the Mediterranean Sea yield both higher rates of methylation than 

more open-ocean waters as well as larger seasonal signals, with enhanced methylation during the 

spring bloom and lower methylation in the late fall [Monperrus et al, 2007]. Demethylation rates 

measured at the same locations are more consistent between coastal and more open-ocean sites 

but show a contrasting seasonal signal, with enhancement of demethylation during late fall 

months only in more open-ocean waters [Monperrus et al, 2007]. Methylated Hg concentrations 

result from the net balance between methylation and demethylation. Thus, seasonal differences 

between these two processes may result in seasonal variations in dissolved concentrations of 

MMHg and its availability for uptake and eventual transfer to marine fish.  

 We measured potential methylation and demethylation rates at the Bermuda Atlantic 

Time-series Study (BATS) site during the spring bloom and in the fall in order to assess seasonal 

changes in methylation and demethylation potential within oligotrophic marine waters. We 

compared potential methylation and demethylation rates at the base of the euphotic zone, where 

phytoplankton abundance is highest but methylated Hg concentrations are generally low, to those 
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at the depth of highest net organic matter remineralization, where marine methylated Hg 

concentrations are typically greatest. By comparing unfiltered waters to 0.2 µm filtered controls, 

we aimed to determine the potential for methylation and demethylation driven by heterotrophic 

bacteria from dark incubations. 

 

Materials and Methods 

 Incubations were performed on board the R/V Atlantic Explorer with water collected 

from the BATS site (31° 40’N, 64° 10’W) between 25-27 April 2012 and 7-13 October 2012. 

During the April 2012 cruise two sets of incubations were performed. Water for one set was 

collected from acid-cleaned GO-Flo bottles deployed on Kevlar line and triggered with Teflon 

messengers. For the second set of incubations water was collected from Niskin bottles deployed 

on the ship’s rosette. In order to avoid contamination due to sampling water through which the 

rosette and line had previously travelled, water collection was triggered during the downcast. 

Concentrations of MMHg of water collected from Niskins and GO-Flo bottles were within 5% of 

each other, suggesting little contamination from the Niskin bottles. As a result, water for October 

incubations was collected from the rosette Niskin bottles. 

 Water was decanted from all bottles within a “bubble” constructed from plastic sheeting 

and filled with HEPA-filtered air under positive pressure provided by an AirClean 3000 flow 

bench. Water from GO-Flo bottles or Niskin bottles was decanted into acid-cleaned 9-L 

polycarbonate carboys (Nalgene). Bottles for filtered incubations were filled with water pumped 

through a 0.2 µm capsule filter (47 mm, Supor polycarbonate membrane, Pall Corporation) 

through acid-washed Teflon tubing linked by a short piece of silicon tubing (Masterflex 25) by a 

peristaltic pump (Masterflex). Bottles for unfiltered incubations were filled by pumping water 

though the tubing without the capsule filter in line.  

 Isotopically enriched 198MMHg and 202Hg(II) spikes were pre-equilibrated at 4°C with 

natural ligands in 0.2 µm filtered seawater for 24 hours prior to addition to incubation bottles. 

Seawater for pre-equilibration was collected from the BATS site in casts prior to those for 

incubation water and filtered through the capsule filter as noted above. The equilibrated spikes 

were added to triplicate bottles for each time point using dedicated gas-tight syringes (Hamilton).  

 During the April incubations, spike concentrations were: 700 fM 198MMHg and 2200 fM 
202Hg(II). Bottles were fixed to 0.5% (final) with H2SO4 (conc., J. T. Baker) after addition of Hg 
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spikes for the t0 time point and after 24-hour incubations in the dark in a cooler at 20°C for the 

t24 time point. 

 During the October incubations, added spike concentrations were increased to: 1346 fM 
198MMHg and 7000 fM 202Hg(II). In order to prevent rapid methylation and demethylation 

observed in the April incubations, t0 bottles were fixed to 0.5% (final) with H2SO4 prior to 

addition of Hg isotope spikes. Bottles were incubated for 0, 0.5, 2, 4, 8, 12, and 24 hours in the 

dark in a cooler at 20°C after which they were fixed to 0.5% (final) with H2SO4.  

 Hg species-specific isotope abundances were analyzed in the WHOI Plasma Facility. The 

cell vent of a Tekran 2700 Automated Methyl Mercury Analyzer was linked via a polyethylene y-

connector to the sample Ar gas of a Thermo Element 2. MMHg was derivitized to methylethylHg 

using ascorbic-acid assisted direct ethylation [Munson—this work, Chapter 2]. Acidified bottles 

were buffered to 0.01% with citric acid buffer (1M, Fisher, pH 5) and neutralized to pH 5 with 

KOH (45%, Fisher) prior to the addition of ice-cold 1% sodium tetraethylborate (2% KOH, 

Fisher). Ascorbic acid (300 µL of 2.5%, Fisher) was added to ensure full extraction of MMHg. 

All reagents were prepared in de-ionized water (>18 MΩ-cm). Samples processing was 

performed within a class 100-grade clean room at WHOI and were transported to the plasma lab 

for analysis.   

 After at least 20-min reaction time for ethylation, the MeHg (DMHg + MMHg) in the 

incubation bottles was quantified as MMHg by GC separation prior to pyrolysis to Hg(0) with the 

Tekran 2700. All 7 Hg isotopes were quantified in the resulting Hg(0), MMHg (as 

methylethylHg), and Hg(II) (as diethylHg) peaks using the Thermo Element 2. 

 Methylation and demethylation were determined from changes in the isotopic 

composition of the MMHg peak using a linear matrix approach using 200Hg as the tracer of 

ambient Hg [Hintelmann and Ogrinc, 2003; in detail Munson—this work, Appendix I]. The 

results of these calculations distinguished between ambient Me200Hg, MM198Hg remaining from 

the MM198Hg spike, and Me202Hg produced from the 202Hg(II) spike for each sample. 

Determinations of MM198Hg lost and Me202Hg produced in at each time point, including t0, were 

made by comparing the ratios of MM198Hg and Me202Hg to the reference isotope 200Hg observed 

in the measured methylethyl Hg peak to the ratios in the equilibrated spike [Hintelmann and 

Evans, 1997]. 

  Potential methylation rate constants (km) were measured in a similar manner to those of 

Lehnherr et al, 2011 as the change in MM202Hg(II) produced relative to available 202Hg(II) 
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substrate divided by the incubation time. However, unlike Lehnherr et al, 2011, we did not 

assume a general loss of 202Hg(II) substrate over time. Instead, we used the observed response in 

the diethylHg peak of the Tekran 2700 to track the change of 202Hg(II) substrate for each 

incubation time point. This approach is validated by the linear response to additions of Hg(II) 

standards in the diethylmercury peak (Figure 1). Although we did not determine ethylation 

efficiencies for Hg(II) conversion to diethylHg, the linear response of the diethylHg to added 

Hg(II) allowed us to approximate available 202Hg(II) in each sample bottle as the 202Hg spike 

component of the diethylHg peak quantified by CVAFS-GC-ICPMS. Values for the 202Hg spike 

component were calculated from the isotopic composition of the chromatographically separated 

diethylHg peaks using a similar linear matrix approach as was used to trace MM198Hg and 

Me202Hg in the methylethylHg peak [Munson—this work, Appendix I]. Potential demethylation 

rate constants (kd) were calculated from the slope of the linear best fit line of ln(MM198Hg) vs. 

time. 

 The km values presented in this work represent the combined production of methylated 

Hg species from Hg(II). Thus, our reported km values do not differentiate between different 

mechanisms of MeHg production measured by Lehnherr et al, 2011. No distinction was made 

between the production of MMHg from Hg(II), the production of DMHg from Hg(II), and the 

production of DMHg from MMHg. Instead, the acid preservation of samples produced a 

combined measurement of methylated Hg ([DMHg] + [MMHg]) at each time point. As a result, 

the presented km values represent the overall conversion of Hg(II) to either DMHg or MMHg, or 

varying relative proportions of the two species. 

  

Results  

Potential Methylation Rates 

 Previous measurements of potential methylation rates have observed “instantaneous” 

methylation within ~30 minutes of adding enriched Hg(II) to seawater incubations [Lehnherr et 

al, 2011]. Consistent with these observations, we observed significant methylation in t0 sample 

bottles that occurred within the ~ 2 hours that elapsed between 202Hg(II) spike addition and 

sample preservation with acid during the April incubation experiments (black bars, Figure 2). 

This pre-t0 methylation was indicated by the difference in the isotopic composition of the 

produced MeHg relative to the composition of added Hg(II) substrate in the equilibrated spike. 

Although rapid methylation has been attributed to abiotic mechanisms or methylation by inactive 
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cells [Lehnherr et al, 2011], incubations of cultured sulfate- and iron-reducing bacteria have 

demonstrated both a time-lag of ~10 min between Hg(II) addition and MMHg production 

[Schaefer et al, 2011] and immediate methylation of Hg(II) substrate with ~1 min sampling 

resolution [Graham et al, 2012]. The reasons for such inconsistencies are unknown, but may be 

due to differences in experimental conditions that influence Hg(II) substrate uptake, including 

Hg(II)-ligand interactions and cell density [Graham et al, 2012]. Regardless of the cause, the 2 

hour time period between Hg(II) spike addition and t0 sample preservation during the April 

incubations likely provided sufficient time for a wide range of potential methylation pathways, 

including intracellular methylation by microbes, extracellular processes, or abiotic 

transformations. As a result, we define “initial” methylation as methylation observed in t0 

samples rather than “instantaneous” methylation due to our inability to determine the exact 

pathway and time scale of the observed methylation. 

 During the April cruise, initial methylation was sufficient to account for all methylation 

observed over the 24-hour incubation, ranging from 5.62-7.09 % of the available 202Hg(II) 

substrate for all samples (Figure 2). During the October cruise, t0 samples were fixed with acid 

prior to addition of the 202Hg(II) spike in order to limit initial methylation to the timescale of 
202Hg(II) spike mixing in the sample bottle, and thus more accurately represent “instantaneous” 

methylation. These t0 samples produced less initial methylation than seen in April, ranging 

between 0.03-0.27 % of available 202Hg(II), as well as a varied contribution of initial methylation 

to the total methylation after 24 hours (Figure 3). However, subsequent methylation in the 24-

hour incubation period was significantly lower in October than April (Figures 2 and 3). 

Therefore, we cannot determine to what extent the high initial methylation observed in April was 

due to truly “instantaneous” methylation versus methylation over the 2 hour experiment set up 

before t0 sample preservation.  

 Perhaps due to the magnitude of initial methylation, values of km calculated from the 

methylation of 202Hg(II) over the 24-hour incubation period measured during the April cruise 

showed no significant difference by depth or between filtered and unfiltered water (Figure 2, 

Table 3). In contrast, during the October cruise, km values reflect the continued production of 

Me202Hg within the 24-hour incubation (Figure 3, Table 3). 

 More frequent sampling over the 24-hour incubation period during the October cruise 

revealed highly dynamic changes in methylation rates within the 24-hour incubation. Maximum 

percentages of Me202Hg produced from available 202Hg(II) were reached after 4 hours of 
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incubation in both filtered and unfiltered water collected from the chlorophyll maximum depth 

(0.2 µm: 0.47 ± 0.00 %; unfiltered: 0.67 ± 0.06 %; Figure 3). This newly formed Me202Hg was 

lost to subsequent demethylation over the remainder of the incubation period, with enhanced 

demethylation in unfiltered water compared to filtered water (Figure 3). 

 In water collected from the oxygen minimum depth, initial methylation was similar 

between filtered and unfiltered water (0.2µm: 0.27 ± 0.01 %; unfiltered: 0.27 ± 0.04 %). 

Indications of rapid methylation and subsequent demethylation in unfiltered is indicated by the 

maximum in Me202Hg at 0.5 hours that is rapidly lost (Figure 3). However, a more robust signal 

appears to be the gradual increase in Me202Hg produced over the course of the 24-hour incubation 

(Figure 3). In contrast to the influence of particles on methylated Hg in waters from the 

chlorophyll maximum, where Me202Hg production and demethylation both appeared to be 

enhanced within the incubation period, the presence of particles in the low oxygen waters appear 

to enhance continual production of Me202Hg and yield the highest values of km measured in 

October (Table 2). 

 

Potential Demethylation Rates 

 During the spring bloom, potential demethylation rates were higher in unfiltered water 

(0.32 d-1) compared to 0.2 µm-filtered water (0.05 d-1) at the chlorophyll maximum depth (Table 

3). In contrast, values of kd measured at the oxygen minimum depth were similar between filtered 

(0.39 d-1) and unfiltered (0.44 d-1) water (Table 3). 

 The reported values for kd from the April experiments were calculated from the net loss 

of MM198Hg from t0 to t24-hours. However, rapid demethylation was observed in all bottles, and 

t0 MM198Hg concentrations ranged from 177 fM in water from the chorophyll maximum depth to 

between 214-218 fM in water from the oxygen minimum depth. These values represent 25-31% 

of the 700 fM concentration of each bottle after MM198Hg spike addition, suggesting that 

although measurable over the 24 hour incubation period, demethylation was occurred quickly 

after addition of the enriched MM198Hg spike. 

 Demethylation was more difficult to quantify in the October incubations. Despite nearly 

doubling the initial concentration of MM198Hg spike in each bottle (from 2200 to 7000 fM final 

concentration) rapid demethylation was rapid in waters from both the chlorophyll maximum and 

oxygen minimum depths. Concentrations of MM198Hg in t0 bottles ranged between 41-44 fM in 

water from the chlorophyll maximum depth and only 11-23 fM in water from the oxygen 
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minimum depth, or 1-3% of the 1346 fM added MM198Hg spike. The values for kd shown in 

Table 3 from October incubations therefore are not directly comparable to those measured in 

April because they are not integrated over the entire incubation period. Instead, they represent 

demethylation from secondary methylation of newly produced MM198Hg that may have a distinct 

kd value compared to that of demethylation of MM198Hg from the pre-equilibrated spike. 

 The rapid demethylation of MM198Hg in the October incubations presumably produced 
198Hg(II) (as well as 198Hg(0)) that could serve as a substrate for methylation, which may account 

for the slight increases observed in measured MM198Hg observed over time, most notably in 

water from the oxygen minimum depth (Figure 4). However, the substantial variations in 

measured MM198Hg between bottles, resulted in non-significant differences between time points 

(Figure 4). 

 

Discussion 

 In these incubations of marine waters, environmentally relevant concentrations of added 

MM198Hg and 202Hg(II) were pre-equilibrated with natural ligands in filtered seawater prior to 

addition to incubation bottles in order to more closely mimic conditions by which methylation 

and demethylation occur in situ. Although we quantify conversion between Hg(II) and 

methylated Hg from spike additions, large values of initial methylation in 0.2 µm filtered samples 

suggests that methylation potential remains heavily influenced by interactions between Hg(II) and 

pools of natural ligands in seawater. The initial methylation observed in 0.2 µm filtered seawater 

samples was not observed in the pre-equilibrated spike solutions, which differed from incubation 

water primarily in the relative concentrations of Hg(II) to natural ligands. Assuming ligand 

binding sites occur at maximum concentrations of 0.3 nN in marine waters [Lamborg et al, 2004], 

the ratio of Hg(II) to equilibrated ligand binding sites is 124 in the equilibrated spike and 

decreases to 0.007 in the incubation bottles. Ligands may therefore play an important role in 

influencing methylation reactions. We observed initial methylation in 0.2 µm filtered water from 

both depths in both sets of incubations, which may indicate a role of dissolved ligands in the 

process. 

 We observed higher percentages of initial methylation in April than was found in 

previous measurements in Arctic waters. Lehnherr et al, 2011 observed methylation of 0.03-

0.25% of added Hg(II) substrate in t0 bottles. We observed significantly higher initial 

percentages, >5%, in April incubation (Figure 1), although, as noted above, this occurred over the 
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relatively long period of time between spike addition and t0 sample preservation (2 hours vs 30 

minutes). Because Lehnherr et al, 2011 added significantly higher concentrations of Hg(II) 

substrate, 380 pM compared to the 2.2 pM used in our experiments, the larger percentages of 

methylated Hg observed in our April incubations represent similar total methylted Hg produced 

in Arctic waters. The methylated Hg produced in Arctic waters due to initial methylation 

represents 29-240 fmole methylated Hg [Lehnherr et al, 2011]. Despite the much larger 

percentages of methylated Hg from our April incubations, the total methylated Hg produced 

during these experiments represents ~28 fmole, similar to those observed in the Artic. In contrast, 

although we observed similar percentages, 0.03-0.27 % (Figure 3), of methylayed Hg(II) 

substrate in October incubations to those of Lehnherr et al, 2011, these represent ~3 fmole 

methylated Hg because of the much lower concentrations of Hg(II) that we added.  

 Unlike previous reports, the initial methylation we observed in April incubations was 

sufficient to result in a net loss of Me202Hg over the course of 24-hour incubations (Figure 1). 

Lehnherr et al, noted demethylation between 12 and 24 hours of incubation of MeHg that was 

produced from isotopically enriched Hg(II) substrate between 0 and 12 hours at 2 sites within the 

Canadian Arctic Archipelago [Figure 2a, Lehnherr et al, 2011]. The net loss of Me202Hg during 

the 24-hour incubation period indicates not only a similar transition from net methylation to net 

demethylation in the Sargasso Sea as was seen in some Arctic waters but also that the time scale 

of this transition is faster in the North Atlantic than the Arctic. However, since methylation in the 

April incubations was only measured at two time points, we cannot determine whether and for 

how long net methylation continued beyond the ~2 hour period over which initial methylation 

occurred. As a result, higher temporal resolution sampling over the course of 24-hour incubations 

is needed for water column methylation rate measurements. 

 Although we observed a decreased capacity for Hg(II) methylation during October 

incubations, the higher resolution sampling during the incubation time course show that the 

transition from net methylation to net demethylation of Me202Hg(II) took place between 4 and 8 

hours of incubation in waters from the chlorophyll maximum as well as filtered water from the 

oxygen minimum (Figure 3). This suggests faster cycling of Hg between Hg(II) and MeHg pools 

in the Sargasso Sea compared to the Arctic, despite lower productivity. 

 Values of kd measured in April from unfiltered waters are comparable to those measured 

in the Canadian Arctic Archipelago [Lehnherr et al, 2011], including a slight enhancement in kd 

in the oxygen minimum depth (Table 3). The large enhancement in kd in unfiltered relative to 
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filtered waters from the chlorophyll maximum depth (Table 3) demonstrates the importance of 

particles in demethylation, perhaps due to the high abundance of phytoplankton at this depth. 

Photodemethylation is also a potentially important process in surface waters (0.003-0.43 d-1) 

[Whalin et al, 2007; Monperrus et al, 2007; Lehnherr et al, 2011]. Since our experiments were 

performed in the dark, we can only speculate as to the relative importance of photodemethylation 

and demethylation by particles, either abiotic or biotic in origin. However, the low concentrations 

of methylated Hg species observed in the upper ocean in the Sargasso Sea [Lamborg et al, 2012; 

Bowman et al, 2013] support photodemethylation as the dominant process in these waters.  

 Potential demethylation rates were more difficult to quantify during the October cruise 

compared to the April cruise, with time course measurements suggesting that essentially all of the 

added MM198Hg spike was lost immediately upon addition to bottle incubations despite 

remaining stable in filtered seawater during the 24-hour spike pre-equilibration. Although 

demethylation measured as the disappearance of isotopically enriched MMHg has been 

successfully measured in marine waters [Lehnherr et al, 2011], a more reliable measurement may 

be the monitoring of production of isotope specific Hg(II) formed from the breakdown of the 

enriched MMHg spike [Monperrus et al, 2007]. 

 Analysis of MM198Hg, especially in waters from the chlorophyll maximum depth, over 

the October incubation time course more closely resembles that of methylation than predicted 

demethylation (Figures 3, 4). The increase in MM198Hg from t0 to t2-hr for both unfiltered and 

filtered water as well as the subsequent decrease in MM198Hg within 8 hours of incubation 

(Figure 4) are similar to those observed in time course measurements of Me202Hg production 

from 202Hg(II) substrate (Figure 3).  

 Because methylation in sedimentary systems is known to occur by bacterial processes, a 

significant aim of the present study was to determine whether marine Hg methylation is likewise 

a cellular process. In order to address this question, we compared potential methylation rates in 

water filtered through a 0.2 µm pore size capsule filter to unfiltered water and incubated in the 

dark to determine the methylation potential of heterotrophic bacteria. The clearest indication of 

heterotrophic methylation is the sustained methylation in unfiltered waters from the oxygen 

minimum depth during October sampling (Figure 3).   

 Together these data suggest that oligotrophic marine waters have the capacity to 

methylate available Hg(II) substrate. Despite the inconsistencies in results between the 2 sets of 

incubations, measureable initial methylation in both filtered and unfiltered water suggests that 
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although the yet unidentified compounds in marine water responsible for methyl donation to 

Hg(II) might be of biological origin, they do not require intact cells for methylation to take place. 

However, this MeHg that is rapidly produced appears to be short-lived in marine waters, 

especially in the presence of particles, based on the rapid transition from net methylation to net 

demethylation. Whether or not this MeHg is available for uptake and bioaccumulation is 

unknown but has the potential to greatly impact human health as THg concentrations change in 

marine waters.  

 Alternatively, the enhancement of methylation in unfiltered water relative to filtered 

water in the October incubations is consistent with previous assumptions that heterotrophic 

bacteria contribute to Hg methylation in oxic marine waters [Mason and Fitzgerald, 1993; 

Monperrus et al, 2007]. Furthermore, in low oxygen waters of the Sargasso Sea, heterotrophic 

bacteria appear to be able to sustain MeHg production over the course of 24-hour incubations and 

may therefore supply MMHg for accumulation through marine food webs. 
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Figures and Figure Legends 
 
Figure 1: Quantification of Hg(II) standard. Integrations of the diethylHg peak area from 
chromatographic separation of Hg species detected after direct ethylation with the Tekran 2700 
methylmercury analyzer show a strong linear relationship with concentrations of added Hg(II) 
standard. Although ethylation efficiency for Hg(II) was not determined, the linear response 
suggests ethylation was consistent across a range of Hg(II) concentrations. As a result, the 
diethylHg peaks can be used as minimum estimates of available Hg(II) substrate for 
normalization of methylated Hg production.  
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Figure 2: Methylated mercury production from the BATS site during the April spring 
bloom. Me202Hg produced from 202Hg(II) added to water collected from the chlorophyll 
maximum (CMX, 105 m) and oxygen minimum zone (OMZ, 800 m) depths at the BATS site in 
April 2012. Initial methylation (black bars) was measured as a percentage of available 202Hg(II) 
converted to Me202Hg at the t0 time point. 24-hour methylation (grey bars) was measured as the 
percentage of available 202Hg(II) converted to MM202Hg after 24 hours of incubation. High initial 
methylation was observed in all samples and was sufficient to account for the total MeHg 
production over the course of 24-hour incubations. The error bars represent 1 standard deviation 
from triplicate incubation bottles. 
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Figure 3: Methylated mercury production during 24-hour time course in the fall. Production 
of Me202Hg relative to 202Hg(II) substrate over a 24-hour time course incubation of water from the 
chlorophyll maximum (CMX, 120 m, circles) and the oxygen minimum depth (OMZ, 800 m, 
triangles) at the BATS site. Initial methylation was observed in both 0.2 µm filtered (black 
symbols) and unfiltered (white symbols) seawater from both depths at the BATS site in October 
2012. Methylation continues through the first 4 hours for 0.2 µm filtered seawater at both depths 
before demethylation of newly synthesized Me202Hg begins. The presence of particulate matter in 
unfiltered waters from the chlorophyll maximum appears to enhance demethylation. In contrast, 
with the exception of a spike in both methylation and demethylation at t0.5 hr, the presence of 
particulate matter, which likely includes heterotrophic bacteria sustains methylation throughout 
the 24-hour incubation. The error bars represent 1 standard deviation from triplicate incubation 
bottles. 
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Figure 4: Methylmercury degradation during 24-hour time course incubation in the fall. 
Total changes in MM198Hg concentration with time in 0.2 um filtered (black symbols) and 
unfiltered (white symbols) from the depths of the chlorophyll maximum and oxygen minimum at 
the BATS site in October 2012. Triplicate bottles show large variability that result in no 
significant change in waters from the chlorophyll maximum and oxygen minimum depths at the 
BATS site. Concentrations of MM198Hg are a small percentage, 1-3 %, of the total 1230 fM 
added in the MM198Hg spike even in by the t0 time point. The 198Hg(II) produced from this 
demethylation appears available for subsequent methylation between t0 and t2-t4 hr in waters 
from the chlorophyll maximum depth. Secondary demethylation, occurs after t2-t4 hr and 
indicates that methylation and demethylation cycles are dynamic within the euphotic zone of 
oligotrophic waters. The error bars represent 1 standard deviation from triplicate incubation 
bottles. 
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Tables and Table Legends  
 
Table 1: Experimental details for measurements of mercury methylation and demethylation 
potential in waters from the BATS site. 
 
Cruise Depth (m) MMHg 

(fM) 
Hg(II) 
(pM) 

O2 
(µmol/kg) 

MM198Hg 
(fmol) 

202Hg(II) 
(fmol) 

April 120 15.8 ± 1.6 0.41 220 126 396 
 800 54.7 ± 1.0 0.40 148 126 396 
October 105 22.9 ± 1.5 2.06 215  242 1260 
 800 26.2 ± 0.9 1.52 148 242 1260 
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Table 2: Potential demethylation rates from water collected from the BATS site. Potential 
demethylation rates were measured from the loss of MM198Hg in incubations of water from the 
chlorophyll maximum and oxygen minimum depths at the BATS site in April and October 2012. 
are greater in unfiltered water compared  
 
 Sample April  

kd (d-1) 
October 
kd (d-1)* 

CMX 0.2 µm filtered 0.05 1.6 
CMX unfiltered 0.32 2.1 
OMZ 0.2 µm filtered 0.39 nd** 
OMZ unfiltered 0.44 nd** 
 
*kd for October were calculated over the time period where MM198Hg decreased, between t4 hr-
t12 hr for CMX 0.2 µm filtered, t0.5 hr-t8 hr for CMX unfiltered. April kd values were calculated  
over 24-hours. 
 
**nd showed no significant decrease in MM198Hg over the incubation time course 
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Table 3: Potential methylation rates for water collected from the BATS site. Methylation 
rates (km) calculated from total methylated mercury production over 24 hours of dark incubation 
in filtered and unfiltered water from the chlorophyll maximum (CMX) and oxygen minimum 
(OMZ) depths during the April bloom cruise and the October cruise. 
 
 Sample April total 

km (x10-2 d-1) 
October total 
km (x10-2 d-1) 

CMX 0.2 µm filtered 5.00 ± 0.90 0.38 ± 0.03 
CMX unfiltered 5.17 ± 1.03 0.22 ± 0.00 
OMZ 0.2 µm filtered 5.05 ± 1.46 0.51 ± 0.09 
OMZ unfiltered 4.58 ± 1.87 0.61 ± 0.08 
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Abstract: 
 Consumption of marine fish exposes humans to potentially harmful concentrations of 
monomethylmercury (MMHg). The complex cycling of mercury (Hg) in marine environments 
poses analytical challenges that limit our understanding of the temporal trends in mercury cycling 
and its potential for entering marine foods webs. We present dissolved mercury speciation data 
from 10 stations in the North and South Equatorial Pacific. In addition, we compare the mercury 
content in suspended particles from 6 stations and sinking particles from 3 stations to constrain 
the sources and sinks of mercury along large water mass differences and gradients in oxygen 
utilization. In general, concentrations of methylated Hg are low with maximum concentrations, 
~0.18 pM for both MMHg and dimethylmercury (DMHg) species, observed in the equatorial 
Pacific. South of the Equator, concentrations of MMHg and DMHg fall to 0.1 pM. Notably, both 
THg and methylated Hg species in the upper 1000 m show a significant decrease from those 
measured in the North Pacific Intermediate Water (Sunderland et al, 2009). Combined, THg and 
methylated Hg concentrations in the surface and intermediate waters suggest Hg cycling distinct 
from that of the North Pacific gyre. Suspended particulate THg and MMHg comprise a small 
percentage of the dissolved concentrations but show distinct trends, increasing in importance with 
depth. Sinking fluxes of THg can reasonably explain the shape of dissolved THg profiles, but  
those of MMHg are far too low to account for dissolved MMHg profiles. In contrast to the upper 
ocean full depth profiles reveal, for the first time, elevated concentrations of THg extending into 
deep waters of the North Pacific and tapering off in the South Pacific. These deep water data 
reveal the contrast between anthropogenically impacted and unimpacted waters.  Despite higher 
THg concentrations at depth, concentrations measured between the surface-1000 m compared to 
those observed in previous cruises in the North and Equatorial Pacific suggest minimal temporal 
changes in this region on decadal time scales. 
 

 

 

 

 

 

 

 

 



	
   72	
  

Introduction 

 The exposure of humans to the toxic element mercury is linked to its chemical speciation 

in marine environments. Humans are exposed to the bioaccumulating organic 

monomethylmercury (MMHg) through consumption of fish. Despite its elevated concentrations 

in a variety of piscivorous fish, MMHg is often found at concentrations composing <15% of total 

mercury (THg) in the water column of the Atlantic and Pacific Oceans [Hammerschmidt and 

Bowman, 2012; Cossa et al, 1997; Mason and Sullivan, 1999; Sunderland et al, 2009; Mason and 

Fitzgerald 1991; Mason and Fitzgerald, 1993]. Unlike freshwater systems, marine environments 

can also contain significant concentrations of the dissolved gaseous organic form 

dimethylmercury, DMHg [Cossa et al, 1997; Mason and Fitzgerald, 1990; 1993; Mason and 

Sullivan, 1999; Hammerschmidt and Bowman, 2012]. 

 Water column methylation of inorganic divalent Hg(II) has long been invoked to account 

for elevated MMHg and DMHg concentrations observed in the marine water column [Mason and 

Fitzgerald, 1993; Sunderland et al, 2009; Hammerschmidt and Bowman, 2012; Cossa et al, 2011]. 

Although resulting MMHg concentrations depend on the availability of the Hg(II) substrate for 

methylation, prediction of methylation is complicated by the redox chemistry of Hg(II), which 

can be reduced to gaseous elemental Hg (Hg(0)). As a result of its multiple identities in marine 

environments, the bioaccumulation of Hg in marine foods webs and ultimate exposure of humans 

to mercury depends on the transformations between Hg pools.  

 Despite the importance of quantifying the speciation of Hg to understand its potential for 

entering marine food webs, measurements of all four methylated and inorganic Hg chemical 

species are limited to a few areas in the open ocean. Mason and Fitzgerald (1993) first measured 

MMHg and DMHg in the Pacific. However, their relatively high detection limits of 50 fM 

resulted in measurable concentrations of MMHg in only~30% of water depths analyzed [Mason 

and Fitzgerald, 1993]. Hammerschmidt and Bowman, 2012, provided dissolved speciation of 

methylated and total Hg as well as particulate THg and MMHg at a single site in the North 

Pacific. However, recent efforts to determine sources of MMHg are hampered by analytical 

challenges in preserving Hg speciation. Due to its instability in acidic conditions, DMHg cannot 

be easily preserved for shore-based determination. As a result, studies of MMHg production have 

relied on total methylated Hg concentrations ([DMHg]+[MMHg]) [Sunderland et al, 2009; Cossa 

et al, 2011]. 
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 The long-standing model for MMHg production attributes marine MMHg to the 

breakdown of DMHg, which in turn is produced directly from Hg(II) [Mason and Fitzgerald, 

1993]. More recently, measurements of water column methylation have suggested that direct 

production of MMHg from Hg(II) dominates in the Arctic water column [Lehnherr et al, 2011]. 

MMHg, but not DMHg, bioaccumulates in marine phytoplankton. As a result, distinguishing 

between distributions and production of these methylated Hg species has the potential to provide 

important insight into the link between dissolved Hg concentrations and resulting fish MMHg 

concentrations. 

 Even less frequently reported than full speciation data sets are studies that include 

particulate concentrations and sinking fluxes of Hg species. Including such measurements can 

help resolve potential movement and in situ generation of Hg species within the ocean. From a 

site in the North Pacific. Hammerschmidt and Bowman, 2012 observed increases in the ratio of 

particulate MMHg to particulate carbon that indicate either the preferential retention of MMHg 

on particles, particle scavenging of MMHg win the water column, or production of MMHg on 

sinking particles [Hammerschmidt and Bowman, 2012]. 

 A recent analysis of North Pacific water found that increased Asian emissions, roughly a 

doubling over the past 25 years [Pacyna et al, 2006], had resulted in increased methylated Hg 

concentrations in the North Pacific Intermediate Waters (NPIW) due to water column in situ 

methylation [Sunderland et al, 2009]. While not overlapping, the stations occupied in the 

presented work extend the transect of Sunderland et al, 2009 as well sample waters measured two 

decades prior by Mason and Fitzgerald [1990; 1993] in 1990. As a result, we are able to evaluate 

whether those increases observed by Sunderland et al, 2009 extend throughout the North Atlantic 

or are limited in geographic range. 

 In the present study, we explore the full dissolved and particulate speciation of Hg across 

significant biogeochemical gradients in the Central Tropical North and South Pacific. We use 

these measurements to evaluate the fluxes of mercury species from the surface to the intermediate 

waters, explore potential sources of methylated Hg, and assess the impact of anthropogenic 

emissions on the North and Tropical Pacific Ocean. 

 

Materials and Methods 

 Dissolved and particulate mercury speciation was measured from a subset of stations 

(Table 1) occupied in the North and South Central Pacific Ocean between 3-24 October 2011 on 
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board the R/V Kilo Moana (Figure 1). These stations were occupied as part of the Metzyme cruise 

(Lamborg and Saito, chief scientists), whose goal was to explore the distribution and activity of 

micronutrients and metalloproteins in the ocean across a gradient of primary productivity and 

subsurface respiration. Water for dissolved Hg determination was sampled from 8 stations 

roughly following a North to Southwest transect beginning southeast of Hawaii at 17°N 154°W 

and ending at 12°S 168°W and 2 stations heading west along 15°S south of Samoa. Suspended 

particles for Hg and MMHg determination were collected by deployment of large volume in situ 

pumps at various depths at 6 stations spanning the North to Southwest cruise transect. Sinking 

particles for THg and MMHg determination were collected in sediment traps deployed at 3 

stations between 17°N and the Equator. 

 Water for dissolved mercury speciation measurements was collected in acid-rinsed 8-L 

X-Niskin bottles attached to a dedicated epoxy-coated trace-metal sampling rosette (SeaBird) and 

deployed on Amsteel line. Bottle sampling was triggered by a SeaBird Autofiring Module 

programmed to activate bottles by pressure during up-casts. Niskin bottles were decanted in a 

positive pressure, HEPA-filtered water sampling bubble constructed from plastic sheeting. 

Decanting took place under ultra-clean N2 pressure through 0.2 µm polyethersulfone filters 

(Supor).  

 Suspended particles were sampled from between 4-14 depths at 6 stations along the 

cruise track (Table 1) using in situ pumps (McLane Research Laboratories, Inc.). Sampling of 

suspended particles was biased towards stations north of the equator. Suspended particles were 

collected on combusted, acid-cleaned quartz microfiber filters (1-µm, Whatman QMA) after an 

in-line acid-cleaned polyester mesh pre-filters (51-µm, Sefar Petex 07-51/33) to provide particles 

of two particulate size fractions. Subsamples of the large size fraction (> 51-µm) were not 

available for Hg analysis, thus we present particulate Hg data for the < 51-µm size fraction. The 

pumps were deployed for up to 3 hours in order to pump ~1000 L of seawater through the filters. 

Filters that were installed and deployed but through which no water was pumped, were processed 

as blanks.  

 Sinking particles were collected in acid-cleaned polycarbonate particle collection tubes 

with removable 250-mL low density polyethylene bottles as collection cups arranged in PVC 

frames at depths of 60 m, 150 m, and 500 m at stations 1, 3, and 5 using a surface-tethered system 

[Lamborg et al, 2008]. Twelve tubes at each depth were deployed containing a layer of 250mL of 

borate-buffered (pH = 8.2) seawater brine prepared from freezing filtered seawater and collecting 
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the concentrated seawater as it melts. Above the brine, each tube was filled with borate buffered 

filtered seawater (pH 8.2) [Lamborg et al, 2008]. Three capped tubes were deployed in the trap 

array as process blanks. Upon recovery, the tubes were allowed to sit for 1 hour to allow any 

particles in the tube to finish sinking. The bottles were then removed and portions of the contents 

filtered on either pre-weighed polycarbonate membranes (1 µm, Nuclepore) or combusted quartz 

fiber filters (QMA). The membranes were used to determine mass and Hg species fluxes. The 

QMA filtered were used for C and N flux determinations. 

 

Hydrographic Data 

 Depth, salinity, conductivity, and dissolved oxygen were measured by a SeaBird 

Electronics deployed on the trace metal rosette. Nutrient samples were filled with filtered 

seawater during Niskin decanting, frozen on board, and measured by the laboratory of Joe 

Jennings at Oregon State University.  

 From dissolved nitrate (NO3
-) concentrations measured along the cruise transect, we 

calculated the parameter N* [Gruber and Sarmiento, 1997, Deutsch et al, 2001] to investigate the 

potential influences of nitrogen cycling on Hg speciation. The parameter is calculated by the 

following equation:  

    

 N*= [NO3
-] – ([PO4

3-]*16) + 2.9 mmol m-3 

 

 Comparing the observed NO3
- to the expected dissolved nutrient ratio according to 

Redfield stoichiometry can account for additions or absence of NO3
-. As a result, N2 fixation 

increases N* values while denitrification decreases N* values [Gruber and Sarmiento, 1997].  

  

Total Mercury Determination 

 Filtered water for dissolved mercury speciation was decanted from the X-Niskin bottles 

into acid-cleaned 2-L Teflon bottles. Subsamples for total mercury (THg) were poured off into 

acid-cleaned 250-mL glass bottles (I-Chem) and oxidized with 0.1mL bromine monochloride (%) 

for >12 hours and pre-reduced with NH2OH (1mL 30% wt:vol). Samples were then reduced with 

SnCl2 and total mercury concentrations were determined by dual Au-amalgamation cold vapor 

atomic fluorescence spectrometry (CVAFS) with a Tekran 2600 against both gaseous Hg and 

aqueous Hg(II) standards.  
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Gaseous Mercury Determination 

 Gaseous elemental (Hg°) and dimethylmercury (DMHg) were purged directly from the 

remaining seawater in the 2-L Teflon bottles using a multi-port cap (Omnifit Q-series; Danbury, 

CT) and impinger with a fine pore frit that extends to the bottom of the bottle. Hg° and DMHg 

were purged from the seawater sample using ultra-pure N2 gas (0.5 L min-1) for 1 hour. The 

gaseous species were separated and pre-concentrated onto a gold-coated sand trap attached 

downstream of a Tenax trap in outlet of the purge cap [Lamborg et al, 2008]. After purging, traps 

were dried with Ar gas flow for 2 min. Hg° was determined using a Tekran 2600, while DMHg 

was determined using a Tekran 2500 following isothermal GC separation and pyrolysis to Hg°. 

Both analytical systems were calibrated with Hg° standard addition. 

 

Methylmercury Determination 

 Following purging of gaseous mercury species, ~200mL subsamples for 

monomethylmercury (MMHg) determination were poured from the 2-L Teflon bottles into acid-

cleaned 250-mL glass bottles (I-Chem) and acidified to 0.5% with concentrated H2SO4 (trace 

metal grade, Fisher Scientific). Samples were stored at -40°C and analyzed at the Woods Hole 

Oceanographic Institution using ascorbic acid-assisted direct ethylation [Munson—this work, 

Chapter 2]. Samples were buffered with either 2 M acetic acid or 1 M citric acid buffer (pH 5) 

and neutralized with KOH (45%) to pH 5. The addition of ascorbic acid (0.167% final v/v) 

allowed for enhanced MMHg determination from seawater after direct derivitization with sodium 

tetraethylborate (1%, in 2% KOH). 

 Sample bottles were fitted with Teflon backed silicon septa caps (I-Chem) and run on a 

Tekran 2700 Automated Methylmercury Analyzer equipped with a custom autosampler tray. 

MMHg concentrations were determined versus linear standard curves prepared daily with MMHg 

standards solution. 

  

Suspended and Sinking Particulate Mercury  

 MMHg and THg in suspended and sinking particles were determined by digesting 

weighed filter portions in HNO3 (2N, trace metal grade, Fisher) for 4 hours at 60°C with 

intermittent sonication. Digests were either oxidized with BrCl and processed as described above 

for THg determination or processed as described above for MMHg determination with direct 
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ethylation. Suspended particulate Hg species are presented as concentrations representing the 

measured Hg or MMHg collected on filters from known volumes of filtered seawater. Total 

filtered mass was not determined. 

 

Results 

Hydrographic Parameters 

 Salinity profiles of the cruise transect reveal a sharp transition between Station 1 (17°N) 

and Station 2 (12°N) (Figure 2). Station 1 displays the southern extent of the North Pacific 

Intermediate Waters in intermediate waters and high salinity surface waters. However, Stations 2 

and 3 reveal lower salinity surface water at the surface, representing the convergence of the North 

Equatorial Current and the North Equatorial Counter Current. Waters with salinity values ~34.5 

reach the surface at Stations 2 and 3 (12°N and 8°N, respectively) appears to segregate shallow 

waters (< 400 m) of the North Pacific from the Equatorial Pacific. Shoaling of nutrients and 

seasonal thermocline is observed at the edge of the North Pacific Subtropical Gyre. Upwelling of 

dissolved nutrients is apparent in the upper 150 m at Station 5 (0°N), where concentrations of 

H3PO4, > 0.6 µmol/L, and HNO3, > 6 µmol/L persist (Figure 2). South of the Equator, high 

salinity waters are observed above a seasonal thermocline that extends deeper in the water 

column moving south. 

 

Dissolved Mercury Speciation 

Total Mercury 

 Surface concentrations of THg are low, < 0.5 pM, for all stations (Figure 5). These low 

concentrations extend through the mixed layer, ~75 m north of the Equator and to depths ~125 m 

south of the Equator. Below the mixed layer, THg concentrations approach ~1 pM reaching a 

maximum of ~1.5 pM in regions of the intermediate waters (<1000m in depth).  

 Elevated concentrations of THg (1.5-2 pM) are observed in deep waters (bellow 2000 m) 

at the northern end of the transect (17°N) and decrease (1.25-1.5 pM) moving south in deep 

waters south of the equator (5°S) (Figures 4, 8). These relatively high THg concentrations result 

from North Pacific Bottom Water moving south until they are replaced at depth (>4500 m) with 

Antarctic Bottom Water (S = 34.7, P15 WOCE, Jan-Mar 1996 S section, Sept/Oct 1994 N 

section). The resulting lower THg concentrations (~1 pM) in deep water south of 5 S fall within 

the range of those measured in the AABW (0.98-1.99 pM) [Cossa et al, 2011].  
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Elemental Mercury 

 Concentrations of Hg°, like those of THg, are low in the mixed layer with highest surface 

concentrations at Stations 1 and 2 where Hg° approaches 0.1 pM (Figure 5). Concentrations of 

Hg° generally increase below the mixed layer, reaching maximum concentrations in the upper 

water column immediately below the thermocline. 

 Two features are noted within this region immediately below the thermocline in the upper 

ocean profiles of Hg°. At Station 2 (12°N), a large Hg° maximum of 0.2-0.4 pM is focused at 

depths between 200-400 m (Figure 8). This maximum also extends to Stations 1 and 3. A second 

maximum of 0.2-0.35 pM Hg° was measured between 150 and 350 m at Station 10 (Figure 8). 

 Minimum concentrations of Hg° are generally observed immediately beneath the 

maximum concentrations at the base of the mixed layer (Figures 5, 8). In the South Pacific, this 

minimum is broad and extends to depths of 1000m. In the North Atlantic, this minimum in 

narrow and concentrations quickly increase from ~0.1 pM to 0.2 pM. In addition, at several 

depths within the region of the deep North Pacific where elevated THg was measured, Hg° 

concentrations increase to 0.2-0.3 pM. 

 With the exception of the two features noted above, Hg° concentrations appear to be 

controlled largely by temperature. Distributions of % Hg° saturation (Figure 9) are similar to 

those of Hg° concentrations (Figure 8) and do not appear to be influenced by THg, as % Hg° 

saturation normalized to THg (Figure 9) are similar to those of % Hg° saturation (Figure 8).  

 

Monomethylmercury 

 Concentrations of MMHg approach detection limits in much of the surface ocean, with 

the exception of the Equator, where concentrations vary between 15-70 fM in the upper 200 m 

(Figure 7).   

 In the upper 1000 m of the ocean, MMHg appears to be distributed slightly 

asymmetrically around the equator, with elevated MMHg concentrations north of the Equator 

relative to south (Figure 8). The highest concentrations of MMHg observed along the cruise 

transect, 150-165 fM, are seen at the depths of the oxygen minimum at the equatorial station. 

 MMHg concentrations in the deep equatorial region are also elevated with respect to 

adjacent stations. MMHg concentrations increase from ~50 fM to 85-155 fM between 2000-3500 

m at the equator (Figure 6).  
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Dimethylmercury  

 Concentrations of DMHg are generally higher than those of MMHg. In contrast to 

MMHg, DMHg in the surface ocean (>20m) was often above our detection limit, generally ~0.2 

pM (Figure 7). DMHg, like MMHg, reaches its maximum concentrations, 0.12-0.16 pM, at 

depths with low oxygen concentrations. However, it is important to note that the highest DMHg 

concentrations are found at depths with intermediate dissolved O2 concentrations (~60 µmol/kg) 

rather than minimum dissolved O2 concentrations.  Like MMHg, DMHg is distributed 

asymmetrically with the maximum concentrations measured north of the Equator at Station 4 

(4°N) (Figure 8). 

 Beneath the mixed layer, DMHg concentrations average ~0.075 pM with slightly lower 

concentrations in south of the Equator.  

 In the deep ocean, elevated DMHg concentrations of ~0.1 pM were measured at several 

depths within waters with elevated THg concentrations, most notably at Station 3 (8°N) (Figure 

6). 

 

Suspended Particulate Mercury Speciation 

 Suspended particles collected from in situ pumps have low concentrations of both THg 

(THgsusp) and MMHg (MMHgsusp). THgsusp ranged from 0.01-0.05 pM from all stations and 

averaged 5.3 % (range: 1.0-27.4 %) of dissolved THg concentrations (Figure 11). MMHgsusp 

ranged from 0.1-3.1 fM and averaged 3.7 % (range: 0.2-12.8 %) of dissolved MMHg 

concentrations (Figure 11). Previous measurements of Hg species in the Pacific have not 

distinguished between dissolved and particulate species [Mason and Fitzgerald, 1993; Laurier et 

al, 2004; Sunderland et al, 2009]. However, the low percentages of THgsusp and MMHgsusp allow 

us to compare our measured values to those previously determined in the Pacific. Such 

comparisons are least accurate in surface waters, where suspended particles make up a greater 

percentage of total Hg species because of low dissolved species concentrations. 

 Concentrations of THgsusp, decrease slightly from the northern to southern ends of the 

cruise transect. THgsusp concentrations average 0.03 ± 0.001 pM at Stations 1 (n=8), 3 (n=14), 5 

(n=13). South of the Equator, the concentration falls to 0.02 ± 0.002 pM at stations 6 (n=4), 8 

(n=4), 9 (n=3). 
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 Average MMHgsusp concentrations, with the exception of Station 1 (0.7 fM, n=8), roughly 

decrease from Station 3 (1.6 fM, n=14) to Station 9 (0.4 fM, n=2). 

 Although the concentrations of THgsusp and MMHgsusp are negligible compared to the 

dissolved species concentrations, the depth distributions of each suggest differences in the cycling 

of difference Hg species. THgsusp concentrations are generally highest within the upper 50 m of 

the water column (Figure 11). In contrast, MMHgsusp concentrations are highest within 100 m of 

the depth of minimum dissolved O2 concentration at each station measured (Figure 11). The only 

exception to these trends are at Station 1, where THgsusp could not be measured within the upper 

50m and Station 9, where MMHgsusp was not measured at 400m, where the dissolved O2 

concentration was lowest.  

  

Sinking Particulate Mercury Speciation 

 Sinking particulate Hg fluxes attenuate with depth at each station, approaching 31.3 

pmol/m2/d (± 12.0) at 500 m for all three stations (Figure 13). Fluxes from the mixed layer were 

highest (156.6 pmol/m2/d) at Station 5 and lowest (36.7 pmol/m2/d) at Station 1. Assuming 80 % 

of wet and dry Hg deposition is rapidly evaded in the surface ocean [Mason and Sheu, 2002; 

Strode et al, 2007; Sørensen, et al 2010], measured particulate fluxes at all stations exceed 

deposited Hg, modeled by GEOS-Chem [Sørensen et al, 2012; Anne Sørensen, personal 

communication] (Figure 13). The observed fluxes therefore require additional inputs of Hg to 

Tropical Pacific waters, most notably at the Equator, where upwelling and lateral transport likely 

entrain THg. 

 Measured values of sinking particulate MMHg fluxes ranged between 0-1.63 pmol/m2/d. 

A relatively high detection limit of 1.52 pmol/m2/d prevents quantitative analysis of measured 

values. However, particle fluxes of MMHg appear to be small throughout the upper water 

column. 

 

Apparent Oxygen Utilization 

 Elevated concentrations of methylated Hg species have commonly been measured in low 

oxygen regions of the open ocean water column [Mason and Fitzgerald, 1993; Sunderland et al, 

2009; Hammerschmidt and Bowman, 2012; Cossa et al, 2011]. Possible explanations for in situ 

methylation in these regions include distinct microbial communities, release of Hg(II) substrate 

for methylation from organic matter during remineralization, or a combination of these factors.   
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 The cruise transect bisected a variety of oxygen regimes (Figure 3). Beginning at Station 

1, North Pacific Subtropical Gyre circulation distributes O2 in the upper 200m of the water 

column. At this southern limit of the Gyre, we observed dissolved O2 concentrations, ~20 

µmol/kg between 400-800 m. Moving to the edge of the Gyre, at Station 2 is the strongest oxygen 

minimum zone of the cruise, with dissolved O2 concentrations < 2 µmol/kg extending broadly 

between 200-900 m. At Station 3, the oxygen minimum zone remains broad 150-700 m but has 

dissolved O2 concentrations again in the range of 20 µmol/kg. From Station 4 southward, the 

oxygen minimum zones weaken, with dissolved O2 concentrations never falling below 50 

µmol/kg. 

 Beginning at Station 8, elevated O2 concentrations (> 80 µmol/kg) persist in the upper 

water column, increasing southward. 

 Apparent oxygen utilization ([O2]sat-[O2]meas) can be used to estimate the extent of 

dissolved O2 utilization for means of organic matter remineralization [Garcia and Gordon, 1992 

as modified by Sarmiento and Gruber, 2006]. Highest concentrations of methylated Hg were seen 

at intermediate values of apparent oxygen utilization (Figure 14)  

 As has been seen in previous studies, concentrations of methylated Hg ([DMHg] + 

[MMHg]) increases to a degree with AOU. However we observe an overall linear relationship 

between ([DMHg] + [MMHg]) versus AOU rather than the parabolic relationship observed by 

Sunderland et al, 2009. In addition, the relationship appears to differ significantly depending on 

station. Measurements from the CLIVAR P16N cruise found clustering of methylated Hg versus 

AOU by depth, perhaps due to largely sampling a single water mass of North Pacific Intermediate 

Water [Sunderland et al, 2009]. In contrast, we observe a tighter clustering of all depths by 

station, with wider ranges of AOU waters sampled in southern stations (Figure 14). 

 

Relative Concentrations of Monomethylmercury and Dimethylmercury 

 Generally, at northern stations (Station 2-6), MMHg concentrations are similar to those of 

DMHg, with the exception of Station 4 (Figure 7). South of Station 6, MMHg concentrations fall 

more rapidly than DMHg, resulting in significantly higher DMHg concentrations compared to 

MMHg. At Station 12, MMHg concentrations are once again comparable to those of DMHg. 

 From their Hg speciation analysis at the SAFe station in the North Atlantic, 

Hammerschmidt and Bowman reported MMHg:DMHg molar ratios that they used to distinguish 

between a steady-state exchange of CH3-groups between DMHg and MMHg throughout the 
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water column in contrast to the oxygen minimum zone, where an elevated MMHg:DMHg molar 

ratio was interpreted to suggest a different mechanism of CH3-group transfer during in situ 

methylation [Hammerschmidt and Bowman, 2012]. They reported a MMHg:DMHg molar ratio 

~2 throughout the water column, with the exception of the oxygen minimum zone, where the 

ratio increased to ~5 [Hammerschmidt and Bowman, 2012]. We observed MMHg:DMHg molar 

ratios that varied between stations, but were generally lower than those observed at the SAFe 

station. MMHg:DMHg molar ratio varied between 0.2-1, with maximum values near 3.5 (Figure 

15, Station 3, 600 m). The ratio values generally decrease along the cruise track. 

 

Discussion 

Factors Controlling Mercury Speciation 

 Salinity contours of the cruise track show that the Station 1 sampled the southern 

boundary of North Pacific Intermediate Water, while Stations 2 and 3 show the influence of the 

North Pacific Subtropical Gyre in the upper 200 m of the water column. 

 The maximum of Hg° observed at Station 2 at the edge of gyre circulation occurs at a 

minimum of dissolved O2, <2 µm/kg, a region of potential alternative metabolisms that might 

influence the production of Hg(0). From the distribution of N*, we see that the maximum in Hg° 

at Station 2 between 100-400m corresponds with a deficit in [NO3
-], N*: range -6 to -8 mmol m-3 

(Figure 10), which suggests denitrification at this depth. Analysis of δO and δN from these waters 

also reveal fractionation signals indicative of denitrification [P. Rafter, personal communication].  

 No direct link between marine denitrification and Hg reduction has been noted previously 

in the literature, although microbial mediated Hg reduction has observed in marine systems 

[Mason et al, 1995; Rolfhus and Fitzgerald, 2004; Poulain et al, 2007], Denitrification has been 

implicated as a pathway of Hg(II) reduction by mer operon-mediated reduction in bacteria 

[Schaefer et al, 2002; Kritee et al, 2008]. Therefore, it is plausible that the observed peak in Hg(0) 

at Station 2 is induced by the strong denitrification signal represented by the values of N* at this 

location. However, calculations of N* in waters across the transect show no additional regions 

where denitrification occurs to the extent that it does at Station 2. As a result, the potential for 

denitrification to influence Hg speciation on basin scales will rely on future measurements of 

Hg(0) in regions of denitrification. 

 In contrast to the maximum of Hg(0) at Station 2, the maximum at Station 10 (15°S) 

appears in waters of relatively high dissolved O2 concentrations, 164 µM/kg, and no decreases in 
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N* value, indicated Hg(II) reduction that is independent of denitrification. This Hg(0) maximum 

in the South Pacific co-occurs with local maxima in both dissolved PO4 and NO3 (Figure 10). 

This maximum in Hg(0) occurs at a depth of 250 m, deeper than light penetration to drive 

photodemethylation and subsequent Hg(II) reduction. However, abiotic reduction mechanisms 

have also been found to dominate in some systems [Monperrus et al, 2007; Whalin et al, 2007; 

Qureshi et al, 2010].  

 The elevated concentrations of THg observed at depth demonstrate the clear distinction 

between waters extending from the North Pacific, where elevated concentrations of THg have 

been attributed to anthropogenic influences [Sunderland et al, 2009] and those in the Equatorial 

and South Pacific. However, these high THg concentrations are surprising given previous 

observations that tracers of entrainment of anthropogenic activity have not yet penetrated below 

1000 m in the North Pacific [Mason et al, 2012]. 

 The salinity data suggest that the observed attenuation of the elevated THg seen in depth 

profiles is likely the displacement of waters moving south from North Pacific with more dense 

Antarctic Bottom Water (AABW, S 34.65-34.75). Likewise, the concentration of THg in these 

higher salinity waters (<1.3 pM from Station 8, 4500-5000 m southward) is within the range 

measured recently in AABW [Cossa et al, 2011].  

  

Fluxes of Mercury in the Central Pacific 

 Particulate THg fluxes closely agree with modeled fluxes from the mixed layer and are 

greater than regional wet and dry deposition [Sørensen et al, 2012; Anne Sørensen, personal 

communication] (Figure 13). Particulate THg fluxes are influential for both removal of Hg 

species through sorption onto sinking organic matter as well as Hg(II) delivery to intermediate 

waters for methylation [Sunderland et al, 2009]. However, the particulate fluxes of THg are 

surprising given the methylated Hg concentrations. Despite low particulate THg delivery at 

Station 1 (17°N, Figure 13), intermediate waters in the North Pacific have substantially higher 

methylated Hg species concentrations [Sunderland et al, 2009; Munson—this work, Chapter 5] 

than those measured in Equatorial and South Pacific stations (Figure 18).  Conversely, higher 

particulate THg fluxes were measured at Station 3 (8°N) compared to Station 1 but did not result 

in higher methylated Hg concentrations (Figure 7). This indicates additional requirements, 

beyond Hg(II) substrate delivery, for Hg methylation in intermediate waters. 
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Temporal Trends in Dissolved Mercury Speciation 

 Despite the fact that it was one of the first regions where full Hg speciation was measured 

[Kim and Fitzgerald, 1986; 1988; Gill and Fitzgerald, 1988; Mason and Fitzgerald 1990, 1991, 

1993], there have been no subsequent measurements of Hg in the Equatorial and South Pacific in 

the past two decades.  

 Comparisons of the closest stations sampled in 1990 to those sampled in 2011 show a 

decrease in THg concentrations both in the thermocline and in oxygen deficient waters. Above 

the thermocline (200 m), we observed a decrease from 1.72 pM THg (1.45 pM excluding St 4 

outlier) to 0.24 pM (Figure 16). Below the thermocline, we observed a decrease of 1.23 pM (1.17 

pM excluding St 4 outlier) to 0.66 pM (Figure 16). 

 Overall comparisons of profiles from the two cruises (Figure 16) shows that our 

measured THg concentrations in the upper water column are significantly lower than those in 

nearest stations of Mason and Fitzgerald, 1993. Deeper in the water column, however, some 

concentrations are similar, resulting in changes in both the shapes and the overall concentrations 

of mercury in 2011 compared to 1990. A clear maximum in THg at 500m was observed by 

Mason and Fitzgerald in the South Pacific waters between 0 and 10°S and 140°W and 170°E 

[Mason and Fitzgerald, 1993, Stations 4, 6, 8, 9]. This feature is absent from the depth profiles of 

THg from Stations 7 or 8, which fall within the area sampled by Mason and Fitzgerald (Figure 

16). Instead, the shape of the profiles measured by Mason and Fitzgerald most closely resemble 

our profiles from Station 1-5 (Figure 5). However, even in the stations where the shape of the 

profiles resemble those of Mason and Fitzgerald, our data show a much lower THg 

concentrations in the upper 200 m (< 2 pM). 

 Sunderland et al, 2009 calculated a significant increase in THg concentrations measured 

during the North Pacific Intergovernmental Oceanographic Commission (IOC) cruise in 2002 

[Laurier et al, 2004] and those measured from similar latitudes during the CLIVAR 2006 

[Sunderland et al, 2009]. The THg concentrations from our Station 1 fall between those measured 

during IOC (Station 9) and CLIVAR P16N (Figure 18), suggesting that the temporal increase 

observed between 2002 and 2006 either did not penetrate to 17°N, the northernmost station along 

our transect, or has not continued in the subsequent period between measurements in this region. 

Similarities in the shape of the total mercury profile at Station 1 and Station 45 of the CLIVAR 

P16N cruise (Figure 18) suggest that similar processes determine the mercury distributions at 

both locations. North Pacific THg concentrations have been found to vary by up to factor of 2 at 
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open ocean stations separated by ~1000 km [Hammerschmidt and Bowman, 2012]. Since the 

IOC, CLIVAR, and Metzyme stations are separated from each other by ~750 km, it is possible 

that the differences in THg concentrations reflect spatial rather then temporal differences in North 

Pacific THg.  

 In addition, Sunderland et al, 2009 characterized the temporal increase in THg 

concentrations within the North Pacific Intermediate Water, a specific water mass that extends 

southward at ~155°W only to ~20°N [Talley, 1993]. As a result, we would not expect to see the 

impact of high THg or methylated Hg from NPIW to persist southward along the Metzyme cruise 

track. Instead the Central and Equatorial Pacific appears to be a region with distinct Hg cycling 

than the North Pacific (Figure 18). 

  

 Full Hg speciation from this transect of the Tropical Pacific Ocean reveals a region of 

low THg and methylated Hg relative to previous reports from the North Pacific [Sunderland et al, 

2009]. The general decrease in THg, DMHg, and MMHg from the North Pacific toward the South 

Pacific follow increasing trends in dissolved oxygen concentrations. However, from sinking 

particulate THg fluxes, we observe that low concentrations, most notably of DMHg and MMHg, 

are not the result of limited THg supply to low oxygen regions of the ocean. Instead, THg 

availability to methylation appears to be limited. Indeed, in extremely low oxygen waters, 

denitrification appears to decrease DMHg and MMHg concentrations either by reduction of 

Hg(II) substrate or by demethylation and subsequent reduction of methylated Hg. Such processes 

must be taken into account when considering how changes in Hg emissions and ocean chemistry 

will ultimately impact MMHg bioaccumulation over time. 
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Figures and Figure Legends 
 
Figure 1: Map of Metzyme cruise stations. The Metzyme cruise left Honolulu, Hawai’i 1 
October and arrived in Apia, Samoa 25 October, 2011. Dissolved, suspended particulate, and 
sinking particulate Hg species were collected at various stations along the cruise track (Table 1). 
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Figure 2: Hydrographic characteristics of the North to South transect of the Metzyme 
cruise. Temperature, salinity, and major nutrients phosphate and nitrate concentrations at Stations 
1-10 for the upper 1000 m (upper panel) and full water column (bottom panel).  
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Figure 3: Oxygen and apparent oxygen utilization along the North to South transect of the 
Metzyme cruise. Dissolved oxygen and calculated AOU for upper 1000 m of Stations 1-10. 
Values of AOU are closely related to dissolved oxygen concentrations, with highest oxygen 
utilization centered at Station 2 (12°N) and extends to below the North Pacific Subtropical Gyre 
at Station 1 (17°N) and beneath the sharp oxycline at Station 3 (8°N). South of the Equator, 
gradients of both dissolved oxygen concentrations and AOU are weak throughout intermediate 
waters. 
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Figure 4: Full water column depth profiles of total mercury and elemental mercury at all 
stations along the Metzyme cruise track. Total Hg concentrations (black circles) are low at the 
surface and increase with depth. Hg° concentrations (white circles) often exhibit subsurface 
maxima as well as increasing concentrations in deep waters (> 2000 m). 
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Figure 5: Upper 1500 m water column profiles of total mercury and elemental mercury at 
all stations along the Metzyme cruise track. Total Hg concentrations (black circles) are low at 
the surface and increase with depth. Surface THg concentrations are low and Hg° concentrations 
(white circles) often subsurface maxima in both the North and South Pacific away.  
 

 

 

 



	
   94	
  

Figure 6: Full water column depth profiles of monomethylmercury and dimethylmercury at 
all stations along the Metzyme cruise track. MMHg concentrations (black circles) are highest 
at the Equatorial station and exhibit maxima in low oxygen waters primarily in the North Pacific. 
DMHg concentrations (white circles) are comparable or higher than those of MMHg and exhibit 
maxima in low oxygen waters in the North Pacific. 
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Figure 7: Upper water column depth profiles of monomethylmercury and dimethylmercury 
at all stations along the Metzyme cruise track. Both MMHg (black circles) and DMHg (white 
circles) concentrations are low in surface waters and increase in intermediate waters, most 
notably in North Pacific and Equatorial waters and are low in South Pacific waters. 
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Figure 8: Ocean Data View gridded sections of mercury species concentrations along North 
to South transect of the Metzyme cruise. Upper water column (surface-1000 m; top panel) and 
full water column (bottom panel) of the Metzyme North to South transect (17°N to 15°S). 
Methylated species, DMHg and MMHg, have patterns that are distinct from THg. Hg(0) 
distributions reveal localized maxima of reduction at Station 2 (12°N) and Station 10 (15°S). The 
full depth section of THg reveals the relatively high concentrations in the North Pacific. 
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Figure 9: Percent saturation of Hg° in the water column of the Tropical Pacific Ocean. 
Percent saturation of Hg(0) in the upper 1000 m (top panel) and the full water column (middle 
panel). The distribution patters are similar to that of Hg(0) (Figure 8). Normalization to THg 
(bottom panel), reveals that percent saturation of Hg(0) is independent of THg distributions. 
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Figure 10: Mercury reduction driven by denitrification at the southern base of the North 
Pacific Subtropical Gyre. Upper 1000m of transect from Station 1 to Station 10 showing A) 
measured Hg° concentrations and B) N* calculated from measured [PO4

3-] and [NO3
-]. Maximum 

in Hg(0) concentrations between 200-400m at Station 2 correspond with indications of 
denitrification from N*. In contrast to Hg° maximum at Station 2, maximum at Station 10 does 
not correspond to denitrification. 
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Figure 11: Suspended particulate total mercury and monomethylmercury collected from 
five stations using in situ pumps. Suspended particulate THg (black circles) and MMHg (white 
circles) concentrations measured from in situ pump deployments are low throughout surface and 
intermediate waters. Neither particulate pool contributes significantly to total concentrations of 
the species in Tropical Pacific waters. 
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Figure 12: Ratios of monomethylmercury to total mercury in dissolved and suspended 
particulate pools. Ratios of MMHg to THg in the dissolved pool (white circles) are typically 
higher than ratios of MMHg to THg in the suspended particulate pool (black circles) in the 
surface ocean and approach one another below 200 m. 
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Figure 14: Total methylated mercury concentrations versus apparent oxygen utilization for 
all stations along Metzyme cruise track. Sum of methylated mercury (measured separately as 
DMHg and MMHg) versus AOU (top image). Methylated mercury concentrations increase 
linearly with AOU at all intermediate depths and clump by station, most noticeably in the North 
Pacific. THg versus AOU (bottom image) show a similar relationship as MMHg versus AOU. 
The similar relationships suggest that remineralization does not stimulate methylation from 
Hg(II) substrate as has been hypothesized from North Pacific data [Sunderland et al, 2009].  
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Figure 15: Ratios of monomethylmercury to dimethylmercury versus depth for four 
stations along the Metzyme cruise track. The ratios of dissolved MMHg:DMHg were generally 
low throughout the water column. Highest values were found at Station 3 (black circles) and 
Station 5 (white circles) compared to those observed in the South Pacific (triangles). The 
maximum and average values are both lower than those observed throughout the water column at 
the SAFe site North Pacific [Hammerschmidt and Bowman, 2012]. 
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Figure 16: Depth profiles in the upper 1000 m of the Equatorial Pacific water column 
measured in 1990 by Mason and Fitzgerald and 2011 during the Metzyme cruise. Depth 
profiles of THg concentrations from stations measured during the 1990 Malcolm Balride cruise 
[Mason and Fitzgerald, 1993] compared to those stations closest in distance measured during the 
2011 Metzyme cruise. Concentrations measured in 2011 appear lower than those measured 2 
decades previously. In addition to differences in concentration, the earlier profiles of Mason and 
Fitzgerald display a more significant increase in THg concentrations both between 100-200 m as 
well as ~500 m. These features are absent from more recent distributions. 
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Figure 17: Total dissolved mercury concentrations in the water column measured at three 
sites in the North Pacific over a nine-year span. The International Oceanographic Commission 
2002 (IOC 2002) data from Station Aloha [Laurier et al, 2004], the CLIVAR P16N 2006 data 
from Station 45 [Sunderland et al, 2009] and Station 1 of Metzyme sampled stations located 
within ~750 km of one another. 
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Figure 18: Total dissolved methylated mercury and total mercury concentrations from the 
CLIVAR P16N section in the North Pacific and the Metzyme cruise in the Tropical Pacific. 
THg concentrations (top image) and methylated Hg (middle image) in intermediate waters from 
the CLIVAR P16N section [Sunderland et al, 2004] and continuing southwest with Metzyme 
stations. THg concentrations reveal the southward extent of North Pacific Intermediate Water is 
limited to ~15°N. Like THg, methylatedHg shows distinct distributions in the equatorial Pacific 
compared to those of the North Pacific Intermediate Water mass as indicated by salinity values 
(bottom right). 
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Tables and Table Legends 
 
Table 1: Station coordinates and speciation samples collected at each station of Metzyme cruise. 
Station Lat Long Samples 
1 17°N 154° 24’W THg, Hg°, DMHg, THgpart, sed traps 
2 12°N 155° 27’W THg, Hg°, DMHg, MMHg (0-1000m) 
3 8°N 156 W THg, Hg°, DMHg, MMHg, THgpart, sed traps 
4 4°N 157° 05’W THg, Hg°, DMHg, MMHg (0-1000m) 
5 0  158°W THg, Hg°, DMHg, MMHg, THgpart, sed traps (0-3500m) 
6 3° 30’S 160° 46’W THg, Hg°, DMHg, MMHg, THgpart 
7 5° 58’S 162° 37’W No Hg samples collected 
8 9° 15’S 165° 22’W THg, Hg°, DMHg, MMHg, THgpart 
9 12°S 167° 34W THg, Hg°, DMHg, MMHg, THgpart 
10 15°S 170 W THg, Hg°, DMHg, MMHg 
11 15°S 171° 30’W No Hg samples collected 
12 15°S 173° 06’W THg, Hg°, DMHg, MMHg 
13 15°S 174° 30’W THg 
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Chapter 5 
Controsls on Mercury Methylation in the Tropical Pacific Ocean 
 
Abstract: 
 We measured potential mercury (Hg) methylation rates along a transect in the Pacific 
Ocean. Using additions of isotopically enriched inorganic (Hg(II)) and monomethylmercury 
(MMHg) substrates to bottle incubations, we evaluated the potential role of heterotrophic bacteria 
in mercury methylation from dark incubations. Resulting methylation rates were measured using 
a linked gas chromatography cold vapor atomic fluorescent spectrometry inductively coupled 
plasma mass spectrometry (GC-CVAFS-ICPMS) method. Methylated Hg species concentrations 
are highest at depths of low dissolved oxygen concentrations in all waters along the transect. 
However, no significant differences in methylation potential were observed between unfiltered 
water collected from the deep chlorophyll maximum compared to water collected from the 
oxygen minimum zone within an individual station. Marine waters at a variety of depths have 
methylation potential despite significant differences in measured MMHg concentrations.  
 We also measured significant methylation potential in both 0.2 µm filtered and unfiltered 
water collected from chlorophyll maximum and oxygen minimum depths, suggesting that 
methylation is not limited to cellular conversion in these waters. Additions of compounds such as 
cysteine and methylcobalamin, known to influence MMHg production in cultures of methylating 
anaerobic bacteria, do not indicate analogous mechanisms for marine methylation to that in 
anoxic sediments. More striking was the observation that addition of bulk organic matter 
collected from each station did not appear to enhance methylation, suggesting that methylation in 
Tropical Pacific waters is not unique to zones of net remineralization.  
 High-resolution sampling of methylation over a 36-hour incubation reveals dynamic 
methylation and demethylation of added Hg species even at locations with low ambient 
concentrations of DMHg and MMHg. These results suggest that MMHg available for 
bioaccumulation is likely controlled by competition between bioaccumulation, particle 
scavenging, and demethylation. 
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Introduction 

 Monomethylmercury (MMHg), the bioaccumulating form of mercury (Hg), was first 

measured in the open ocean water column over two decades ago [Mason and Fitzgerald, 1990]. 

Since then, measurements of methylated Hg, measured as either MMHg, the non-

bioaccumulating organic species dimethylmercury (DMHg), or the sum of MMHg and DMHg 

(MeHg), have revealed local maxima of methylated Hg species within regions of low oxygen 

[Mason and Fitzgerald 1993; Mason et al, 1998; Mason and Sullivan, 1999; Cossa et al, 1997; 

Cossa et al, 2009; Cossa et al, 2011; Sunderland et al, 2009; Hammerschmidt and Bowman, 2012; 

Munson, this work—Chapter 4]. As a result, MMHg production has been linked to active organic 

matter remineralization [e. g. Sunderland et al, 2009]. Limited direct water column measurements 

of mercury methylation have been performed in the Canadian Arctic Archipelago [Lehnherr et al, 

2011] and coastal and open water sites in the Mediterranean [Monperrus et al, 2007a, b] from 

bottle incubations using additions of isotopically enriched mercury species. However, no 

mechanistic studies have been performed to identify environmental factors that control the 

production of MMHg in these regions of the water column.  

 Anthropogenic loadings of Hg to marine environments are thought to have increased 3-

fold since the Industrial Revolution [Lamborg et al, 2002] Various animal records, such as bird 

feathers [Vo et al, 2011] and egg shells [Xu et al, 2011] suggest that these THg increases result in 

subsequent increases in MMHg concentrations within marine food webs. Isotopic signatures of 

Hg in fish collected from the North Pacific indicate water column methylation as the primary 

source of MMHg [Blum et al, 2013], although the rate of increase in marine fish is debated 

[Kraepiel et al, 2003]. The transfer between dissolved Hg pools, biota, which result in elevated 

fish tissues concentrations is complex. Therefore, the controls on MMHg production and thus the 

available MMHg for bioaccumulation is essential to accurately predict how changes in total 

global Hg emissions will impact human MMHg exposure. 

 Anaerobic bacteria are known to methylate mercury in culture and anoxic sediments 

[Gilmour et al, 2013]. However, MMHg distributions measured in the Pacific Ocean to date have 

revealed elevated MMHg in open-ocean regions with dissolved O2 concentrations well above 

those classified as anoxic [Mason and Fitzgerald, 1993; Sunderland et al, 2009; Hammerschmidt 

and Bowman, 2012; Munson—this work, Chapter 4]. Analogous to other anaerobic processes, 

such as sulfate reduction, mercury methylation potentially occurs throughout the marine water 

column within anoxic microzones on particulate matter [e.g. Shanks and Reeder, 1993]. 
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Alternatively, the requirement of low redox conditions for methylation by sulfate-reducing 

bacteria may limit their methylation activity in open-ocean regions, such as to areas of 

denitrification [Malcolm et al, 2010]. Recent measurements of potential methylation rates in high 

oxygen waters from marine euphotic zones have raised the question of the potential for aerobic 

mechanisms for Hg methylation that may be unique to marine systems [Monperrus et al, 2007; 

Lehnherr et al, 2011]. 

 A substantial amount of work with cultured bacteria has revealed the important roles for 

specific chemical compounds with active marine cycling in anaerobic methylation. Sulfate- and 

iron-reducing bacteria utilize methylcobalamin (vitamin B12) as the methyl donor for [Ekstrom et 

al, 2003; Ekstrom and Morel 2008]. The recently identified hgc methylation genes in anaerobes 

have clarified the link between methylcobalamin and Hg methylation as it encodes a cobalamin 

utilizing methyltransferase [Parks et al, 2013]. Methylcobalamin is produced by cyanobacteria 

found throughout marine euphotic zones [Bonnet et al, 2010]. However due to its universal 

requirements among marine phytoplankton, methylcobalamin is actively scavenged, most notably 

by diatoms [Bertrand et al, 2009]. As a result, concentrations of the vitamin in the open ocean can 

be limiting [Panzeca et al, 2009].  

 In addition to its roll in intracellular methylation, methylcobalamin is known to 

abiotically methylate Hg(II) at pH 4 and has been considered as a potential abiotic mechanism of 

MMHg production in natural systems from laboratory studies and theoretical calculations [Celo et 

al, 2006; Jiménez-Moreno, 2013]. However, in marine waters where methylcobalamin is limiting, 

its dissolved concentrations might be too low to support a high degree of Hg methylation. 

 Low molecular weight thiols such as the amino acid cysteine and glutathione have been 

found to alternately stimulate or hinder active Hg(II) uptake by different species of anaerobic 

bacteria in culture [Schaefer and Morel, 2009; Schaefer et al, 2011]. The potential for stimulation 

of methylation in natural systems by thiol availability has not been investigated, but may be 

limited in oxic marine waters. Thiol mediated enhancement or suppression of Hg(II) uptake is 

specific to reduced species [Schaefer and Morel, 2009; Schaefer et al, 2011] and thiols found in 

marine waters may be oxidized in its primary role as a copper-binding ligand in low Hg marine 

waters [Kading, 2013]. Although previous measurements of dissolved thiols in marine waters 

have found that up to half may persist in their reduced forms [Dupont et al, 2006], distributions of 

small thiols such as cysteine and glutathione are found at nanomolar concentrations in the surface 

ocean, with depletion at depth [Kading, 2013; Swarr et al, 2012]. As a result, thiols may not 
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impact marine methylation. However, the relatively small amount of Hg(II) methylation that is 

required to account for observed concentrations of MeHg in low oxygen waters, <<1 pM 

[Munson—this work, Chapter 4], and the ability of cysteine to increase methylation in E. coli 

under oxic conditions [Ndu et al, 2012] make thiols a target for studies of methylation in natural 

systems. 

 The potential for methylcobalamin and thiols to influence marine Hg methylation, either 

biotically or abiotically, has not been studied previously. A correlation between methylated Hg 

(as [DMHg + MMHg]) and rates of organic matter remineralization has been observed in the 

North Pacific [Sunderland et al, 2009]. Bulk organic matter remineralization could potentially 

release MMHg outright or Hg(II) substrate for methylation by microbes. In contrast, 

remineralization may release a specific compound, such as methylcobalamin or a small thiol, that 

specifically promotes MMHg production.  

 We used isotopically enriched Hg species to simultaneously measure potential rates of 

methylation and demethylation from incubations of water collected along a cruise transect from 

the tropical North to the tropical South Pacific. In addition to measuring rates of net methylation 

and demethylation, we also investigated the impact of added organic matter, collected during the 

cruise as well as individual compounds known to stimulate methylation in culture experiments, 

including methylcobalamin [Ekstrom and Morel, 2008], and thiols [Schaefer and Morel, 2009, 

Schaefer et al, 2011]. We took the approach of a limitation experiment in order to determine 

whether methylation and demethylation in the marine water column are stimulated by bulk 

organic matter remineralization or the release of a specific compound that controls Hg dynamics. 

In addition, we compared potential rates of methylation in filtered and unfiltered water to 

determine the extent of cellular methylation in these environments. 

 

Methods 

 Isotopically enriched MM198Hg and MM199Hg were prepared from 198HgO and 199HgO 

(Oak Ridge National Laboratory), respectively, by methylation with methylcobalamin 

[Hintelmann and Ogrinc, 2003]. A mass of 100 µg of enriched HgO was dissolved in 10 µL HCl 

(conc, J. T. Baker) and diluted in 500 µL sodium acetate buffer (0.1 M, pH 5). A mass of 500 µg 

of methylcobalamin (Sigma) was dissolved in 500 µL sodium acetate buffer and added to the Hg 

solution. The reaction proceeded for 3 hours at room temperature before being stopped with 200 

µL KBr (0.3 M KBr in 2 M H2SO4). The synthesized enriched MMHg was extracted with toluene 
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(400 µL, 3x). Extracts were combined and dried over sodium sulfate. A 100 µL aliquot of this 

primary stock was dissolved in 10 mL isopropanol to produce a secondary stock solution. 

Because methylcobalmain was a target of our investigation for its potential role in in situ 

methylation, carryover of methylcobalamin from reaction solution was found to be minimal (<1 

pM) from ICPMS analysis with a mixed metal standard.  

 Water for incubation experiments was collected on board the R/V Kilo Moana between 1-

24 October 2011 (Figure 1). Water filtration, decanting, and treatment additions were performed 

under positive pressure from HEPA-filter laminar flow hoods within clean bubbles constructed on 

board. Concentrations of THg and DMHg were measured at sea using established methods 

[Lamborg et al, 2012]. MMHg concentrations were measured on shore using ascorbic acid-

assisted direct ethylation [Munson—this work, Chapter 2], with the exception of 17°N, where no 

MMHg samples were preserved. An estimate of MMHg at the Station 1 depths at which 

incubation experiments were performed was therefore calculated from the CVAFS peak data 

from incubation samples after correction for the added MM198Hg spike (Table). The calculated 

values fall within the range of methylHg (sum of DMHg and MMHg) previously measured in 

North Pacific waters [Sunderland et al, 2009]. 

 Water was collected from two depths at each station: 1) chlorophyll a maximum and, 2) 

the oxygen minimum each identified from the SeaBird package data on prior water sampling 

casts at each station (Table 1). Water was collected in acid-washed X-Niskin bottles deployed on 

a dedicated trace metal sampling rosette using Amsteel metal-free wire.  

 Sufficient water for incubations was decanted under N2 pressure either unfiltered or 

filtered through a 0.2 µm capsule filter (47-mm, Supor polycarbonate membrane, Pall 

Corporation) into 20-L acid-washed polycarbonate mixing carboys (Nalgene). The carboys were 

kept covered in dark plastic bags as much as possible during incubation preparation to minimize 

exposure to light.  

 Pre-equilibrated spikes of isotopically enriched MM198Hg and 202Hg(II) were prepared by 

adding concentrated 202Hg(II) and MM198Hg to 0.2-µm filtered seawater and equilibrating at 16°C 

in the dark for 24 hours prior to use. Spikes were added using gas-tight syringes dedicated for use 

in isotope enrichment experiments (Hamilton).  

 Incubations were performed in triplicate in 250-mL amber glass bottles (I-Chem) filled to 

the shoulder from mixing carboys. All bottles had approximately 25 mL of headspace. As a 

result, in situ redox conditions were not maintained during incubation. After water addition, pre-
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equilibrated spikes of 202Hg(II) (396 fmoles) and MM198Hg (126 fmoles) were added. Treatments 

of C (as succinate), Cys, GSH, Co, B12, ½ of 2-cm punches from McLane in situ pumps 

[Munson—this work, chapter 4], and additive treatments C+Co and Cys+Co were added to 

triplicate bottles (Table 2). Prior to addition C, Cys, and GSH treatments were passed through a 

Chelex 100 resin (Bio Rad) column to remove Co and other divalent cations to avoid 

contamination by Co or other divalent metals.  

 Bottles for t0 measurements were fixed after treatment addition with 1 mL (~0.5%, final) 

H2SO4 (conc., Fisher TM grade) and were stored at -4°C until analysis except for bottles amended 

with methylcobalamin, which were frozen at -40°C to avoid abiotic methylation under acidic 

conditions during storage. Station 1, 3, 5 bottles were incubated in the dark for 24 hr at 

temperatures maintained in refrigerators set at their highest temperature setting (Table 1). Station 

9 bottles were incubated in the dark up to 36 hr in a time course study. After incubation, bottles 

for all time points were fixed with H2SO4 and stored at -4°C or -40°C for methylcobalamin as 

noted above. Because DMHg decomposes to MMHg in acidic conditions [Black et al, 2009], all 

measured MMHg concentrations represent the sum of DMHg and MMHg present at in each 

bottle at the time of acidification. 

 Analysis of MMHg concentrations and isotopic composition was performed on a Thermo 

Element 2 ICPMS in the Plasma Laboratory at the Woods Hole Oceanographic Institution. The 

inlet of the ICPMS was linked via a polyethylene y-junction to a Tekran 2700 Automated Methyl 

Mercury Detector. 

 Samples were prepared as for MMHg determination (above) using ascorbic-assisted 

direct ethylating of MMHg and simultaneous measurement of MMHg concentrations as well as 

isotopic composition by ICPMS. 

  Hg isotopes were measured individually and were integrated using MATLAB scripts to 

quantify relative isotopic ratios in the MMHg (as methylethylHg) and Hg(II) (as diethylHg) 

peaks. Resulting methylation of 202Hg(II) and demethylation of MM198Hg were quantified using a 

matrix linear approach [Hintelmann and Ogrinc, 2003, see Appendix I for explicit calculations]. 

We added MM199Hg as an internal standard to samples and equilibrated for 24-hours prior to 

MMHg determination for isotope ratio-ICPMS [Hintelmann and Evans, 1997]. 

 The two previously reported marine methylation rate measurements have used different 

methods to calculate km values. Lehnherr et al, 2011 considered decreases in the available 
198Hg(II) substrate in their rate measurements. From CVAFS measurements of decreases in 
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198Hg(II) concentrations overtime from separate incubations of seawater, Lehnherr et al, 2011 

fitted an exponential curve to the decrease in 198Hg(II) that they incorporated into their 

calculations of km [Lehnherr et al, 2011]. This was necessary because MMHg and Hg(II) could 

not be simultaneously determined with their analytical set up in individual bottles. In contrast, 

earlier measurements from Monperrus et al, 2007, assumed no decrease in Hg(II) substrate 

availability. Hg(II) is typically measured from tin chloride reduction followed by CVAFS 

analysis. Although not analytically identical, we observed quantitative recovery of Hg(II) from 

the diethylHg peak of the Tekran 2700 instrument used for CVAFS analysis (Figure 2A, also 

Figure 1 Munson—this work, Chapter 3). As a result, our rate measurements are presented as a 

modification of the Lehnherr et al, 2011 method. Instead of fitting a generalized curve of 
202Hg(II) substrate availability, we calculated methylation of 202Hg(II) relative to available 
202Hg(II) measured in individual bottles. Results are presented as percentages of methylated 
202Hg(II) substrate. Potential methylation rate constants, km, were calculated as the percentage of 

methylated 202Hg(II) substrate over the incubation time.   

 Potential demethylation rates were calculated assuming first order kinetics from the slope 

of the linear best fit line of Ln(MM198Hg) vs. time. 

 

Results 

Mercury Methylation: Unamended Samples 

 Potential rates were measured across a variety of hydrographic parameters [Munson—

this work, Chapter 4] as well as ambient dissolved Hg concentrations. In general, concentrations 

of methylated Hg, THg, dissolved O2, and apparent oxygen utilization (AOU) [Sarmiento and 

Gruber, 2006; Garcia and Gordon, 1992] decreased north to south (Figure 3). A region of low 

oxygen intermediate waters centered at 12°N set apart high methylated Hg intermediate waters in 

the North Pacific [Sunderland et al, 2009] seen at 17°N (Figure 4) from a band of lower 

methylated Hg species concentrations between 8°N and 5°S.  Methylated Hg concentrations are 

higher in waters from oxygen minimum depths (82-310 fM methylated Hg) relative to 

chlorophyll maximum depths (26-45 fM methylated Hg; Figure 4).   

 Production of Me202Hg(II) during 24-hour incubations did not correspond to ambient 

methylated Hg concentrations (Figure 10). Within the chlorophyll maximum, values for km were 

highest at 8°N (CMX: 5.71-10.19 %/d) and lowest at 17°N in the North Pacific (CMX: 0.39-0.43 

%/d; Table 3) despite nearly identical ambient concentrations of methylated Hg (Table 1). Values 
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for km in oxygen minimums depths generally increased as ambient methylated Hg concentrations 

decreased, with the highest km values measured at 8°N in the Tropical Pacific (OMZ: 3.77-7.40 

%/d), intermediate km values at the Equator (OMZ: 1.00-1.74 %/d) and South Pacific (OMZ: 

1.12-2.28 %/d), and the lowest km values measured at 17°N in the North Pacific (OMZ: 0.64-0.95 

%/d) despite the fact that methylated Hg concentrations at 17°N were four times higher than those 

measured at 12°S (Table 1). 

 Difference in km values between 0.2 µm filtered and unfiltered waters were largely 

insignificant at either depth measured (Table 3). Nor were there clear trends in km values 

measured in waters from chlorophyll maximum depths compared to those measured from low 

oxygen depths.  

 Consistent with our methylation measurements from the Sargasso Sea [Munson—this 

work, Chapter 3], we observed significant initial production of Me202Hg relative to added 
202Hg(II) spike within the ~2 hours of time between 202Hg(II) spike addition and t0 sample 

preservation with acid (Figures 5). Initial methylation, like that of potential methylation rates, 

were highest at 8°N (CMX: 8.27-12.17 %/d; OMZ: 2.45-6.84 %/d), where it accounts for all 

methylation observed during the 24-hour incubations in the chlorophyll maximum waters (Figure 

5). Initial methylation was lowest at 17°N (CMX: 0.28-0.47 %/d; OMZ: 0.54-0.66 %/d), where 

methylation continued throughout the incubation period (Figure 5) as indicated by significant 

increases in methylation between t0 and t24-hr bottles. 

 Higher temporal resolution of sampling at the South Pacific station, 12°S, reveals that 

methylation of added 202Hg(II) is rapid, with maximum methylation reached within 6 hours, in 

unfiltered waters and subsequent demethylation of Me202Hg occurs within ~12 hours of total 

incubation time (Figure 6, white triangles). In contrast, Me202Hg produced in filtered waters is not 

rapidly demethylated and persists over the course of the incubation (Figure 6, black triangles). In 

contrast to Sargasso Sea waters, in which unfiltered waters appeared to support methylation 

throughout 24-hour incubations [Munson—this work, Chapter 3], the presence of particulate 

matter, either biotic or abiotic in origin, appears to enhance demethylation. 

 

Mercury Methylation: Amended Samples 

 In general, the addition of compounds and bulk organic matter did not enhance the 

continual methylation of Hg(II) in 24-hour incubations. Since methylated Hg concentrations are 

typically highest in oxygen minimum zones of the water column, we hypothesized that the release 
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of specific compounds, such as methylcobalamin and cysteine, could increase measured 

methylation rates at the chlorophyll maximum as these are areas of maximum plankton growth 

which may limit the availability of these compounds in Hg cycling. Limitation by any one of 

these compounds would have been indicated by increased Me202Hg production in amended waters 

collected from the chlorophyll maximum compared to those from the oxygen minimum. 

Amendment addition of all treatments, with the exception of methylcobalamin, appeared to 

increase initial methylation in both filtered and unfiltered waters (Figure 8, left panels) in waters 

from the chlorophyll maximum at 17°N and 12°S. The magnitude of methylation upon treatment 

addition was enhanced in unfiltered waters compared to filtered waters (Figure 8, lower panels). 

In both filtered and unfiltered waters the combined cobalt and succinate treatment (CoC) 

produced the greatest stimulation of methylation relative to unamended samples as indicated by 

the values of the stimulation factor normalized to unamended incubations (0.2 µm: 2.48 ± 0.41 

unfiltered: 3.64 ± 0.32) (Figure 8). 

 In oxygen minimum waters, treatment addition stimulated methylation in filtered waters 

at the Equator (Figure 9, top panels). This stimulation was maintained over the 24-hour 

incubation period (Figure 9, top right). The addition of treatments to unfiltered waters from 

oxygen minimum depths did not produce clear responses and high variability was seen between 

replicate samples (Figure 9, bottom panels). 

 Waters amended with methylcobalamin showed no abiotic methylation of 202Hg(II). In 

contrast, addition of methylcobalamin appeared to promote reduction of 202Hg(II) as indicated by 

the increase in 202Hg in the Hg(0) peaks in the chromatograms (Figure 2). However, recovery of 

Hg(0) concentrations were not quantified in our analysis, so the extent to which reduction takes 

place and whether 202Hg(II) is reduced prior to or following methylation could not be precisely 

determined.  

 Despite the ability of many individual compound additions to stimulate methylation in 

waters from chlorophyll maximum depths (Figure 8), the addition of bulk organic matter from 

McLane pump filters did not appear to stimulate methylation for most stations. The only 

exception was modest stimulation in filtered waters from the chlorophyll maximum at 8°S 

(stimulation factor normalized to unamended incubations, punch: 1.65 ± 0.20). The pump filter 

punch additions are a complex, and uncharacterized, mixture of inorganic matter and organic 

matter, including cells that are smaller than the ~51 µm. As a result, addition of pump punches to 

0.2 µm filtered seawater inoculates these samples with uncharacterized bacterial communities as 
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well as adding both particles and organic matter. The punch treated 0.2 µm filtered samples 

therefore represent a combination of cellular and non cellular methylation potential. 

 

Mercury Demethylation 

 Measurements of MM198Hg remaining at time points indicated initial demethylation of 

the added MM198Hg spike prior to t0, which prevented calculations of kd. The only exception to 

this was in unfiltered water from the oxygen minimum depth of 12°S (Figure 7). In these 

samples, MM198Hg persisted through 12 hours of incubation resulting in a calculated kd of 5.06 

(d-1) from the slope of the line of ln(MM198Hg) vs. incubation time.  

  

Discussion 

 Correlations between methylated Hg concentrations and regions of net organic matter 

remineralization have implicated in situ methylation as a significant source of methylated Hg to 

the marine water column [Sunderland et al, 2009; Cossa et al, 2011; etc.]. Parallels between 

oxygen minimum zones within the marine water column and the production of MMHg by 

anaerobic bacteria have led to suggestions that marine bacteria methylate Hg in these 

environments [Mason and Fitzgerald, 1993]. However, previous measurements of methylation in 

low oxygen waters have failed to identify marine anaerobes that are capable of methylating Hg 

[Malcolm et al, 2010]. In the two previous measurements of potential methylation rates in marine 

waters only those in the Mediterranean distinguished between abiotic and biotic methylation 

[Monperrus et al, 2007]. However, the use of a 45-µm size cut off between filtered and unfiltered 

water and dark controls compared to diurnal incubations in that study did not account for the 

activity of heterotrophic bacteria, which are often small enough to pass through 45-µm filters 

[Lalli and Parsons, 1997]. Potential methylation rates have also been measured in unfiltered water 

in the Canadian Arctic Archipelago and methylation observed during incubations were assumed 

to be due to bacterial activity [Lehnherr et al, 2011]. As a result, the current study is the first to 

quantify methylation potential by particulate matter including heterotrophic bacteria and to 

examine potential limitations of Hg methylation by compounds released during organic matter 

remineralization. 

 Across substantial gradients in the Pacific Ocean, we observed significant methylation 

potential in waters from both the chlorophyll maximum and oxygen minimum depths. In addition, 

methylation potential was not limited to unfiltered water. Despite pre-equilibration of enriched 
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Hg species spikes in filtered seawater prior to addition to bottle incubation, initial methylation 

was measured in all waters and contributed the majority of methylation in oligotrophic waters at 

12°S. Higher temporal resolution of incubations from 12°S show dynamic methylation and 

demethylation processes take place within the time course of incubations, similar to observations 

of methylation in oligotrophic waters of the Sargasso Sea [Munson—this work, Chapter 3]. 

However, in the South Pacific, methylation over the entire 36-hour incubation period appears to 

be controlled by particle-induced demethylation of newly produced Me202Hg after rapid 

production. The Me202Hg produced in unfiltered waters from the oxygen minimum depth at 12°S 

is quickly demethylation (Figure 6, white triangles). Methylation in filtered waters is similar in 

magnitude to that in unfiltered waters but persists over the course of the incubation (Figure 6, 

black triangles).  

  Consistent with previous measurements from Arctic and Mediterranean waters [Lehnherr 

et al, 2011; Monperrus et al, 2007], values of km measured in the water column along a transect of 

the Pacific are decoupled from ambient concentrations of methylated Hg (Figure 10). Previous 

work has suggested that in situ methylation within low oxygen depths of the North Pacific result 

in elevated methylated Hg concentrations [Sunderland et al, 2009]. The northernmost of our 

incubations, at 17°N, took place within 750 km of waters sampled by Sunderland et al, 2009. At 

17°N, we observed no significant difference in potential methylation rates between the 

chlorophyll maximum and oxygen minimum depths despite a difference of ~300 fM between 

ambient methylated Hg concentrations between the two depths (Figure 4). Furthermore, the 

addition of bulk organic matter from McLane pump filters to bottle incubation did not enhance 

potential methylation in waters collected from this site. These observations suggest that delivery 

of Hg(II) by organic matter does not limit methylated Hg production in North Pacific waters.  

 Full Hg speciation measurements at Station 1 [Munson—this work, Chapter 3] reveal 

substantial concentrations of Hg(II) (~1 pM, calculated as: [THg] – [Hg(0)] – [DMHg] – 

[MMHg]) are found in low oxygen waters at all stations where potential methylation rates were 

measured (Figure 11). The detection of Hg(II) does not provide information about its availability 

to processes or metabolisms involved in methylation. However, the relatively high concentrations 

of Hg(II) implies that methylation along the transect is not solely limited by Hg(II) substrate 

availability.  

 Laboratory studies have speculated that abiotic methylation of Hg(II) by 

methylcobalamin may be a possible methylation pathway in natural systems [Celo et al, 2006; 
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Jimenez-Moreno, 2013]. The addition of methylcobalamin to seawater incubations resulted net 

reduction of Hg(II) to Hg(0) rather than methylation (Figure 2). As a result, we do not believe 

abiotic methylation by methylcobalamin is a significant source of methylated Hg to Equatorial 

Pacific waters.  

 Despite the lack of methylation by methylcobalamin, non cellular methylation appears to 

be a significant source of MMHg production and dominated total methylation measured over 24-

hour incubations (Figure 5). The use of 0.2 µm filtered and unfiltered seawater to quantify 

methylation by heterotrophic bacteria is an operational distinction. Although hard to quantify, 

cells have been found in marine waters after filtration through 0.2 µm filters in the Mediterranean 

and Sargasso Sea [Haller et al, 1999; Li and Dickie, 1985] under vacuum filtration. These so-

called ultramicrobacteria (<0.1 µm3 volume) [reviewed by Duda et al., 2012] may include cells in 

starvation or inactive forms, cells with flexible walls that allow them to pass through filter pores, 

and cells that are < 0.2 µm regardless of their stage of life or nutrient status [Heller et al, 1999]. 

The smallest identified free-living marine cells, the SAR11 clade, have diameters of 0.12-0.20 

µm [Rappé et al, 2002]. In addition, viruses, and cell materials may pass through filters. As a 

result, we have avoided referring to filtered water as abiotic because they likely contain materials 

of biological origin. However, 0.2 µm filtration would potentially collect a subset any potentially 

intact cells such as SAR11 due to clogging of filters. In addition, if the cells that pass through 

filters are sessile or, like SAR11, have slow growth rates (0.40-0.58 d-1) [Rappé et al, 2002], 

filtered waters would likely have lower cell density and less diversity in the active metabolisms 

present compared to unfiltered waters. As a result, we have not attributed the high methylation 

observed in filtered waters to cellular mechanisms because such an assumption would require a 

number of processes, such as reactivation of sessile cells, rapid rates of cell growth, and/or 

preferential selection of Hg(II) methylating cells during filtration that cannot be determined from 

our experimental design. Under the assumption that filtration removed a majority of the 

heterotrophic bacteria relative to unfiltered waters, methylation in 0.2 µm filtered Tropical Pacific 

waters that was equal or greater than that of unfiltered waters (Figure 5) suggests that 

heterotrophic bacterial methylation is not the primary source of methylated Hg to these waters. 

Instead, the presence of particles appeared to enhance demethylation of Me202Hg that can be 

rapidly produced in all marine waters.  

 Previous reports of methylation rates have differed in their considerations of available 

Hg(II) substrate. Monperrus et al, 2007 assumed a constant supply of Hg(II) substrate for 
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methylation. In contrast, the rates presented by Lehnherr et al, 2011 were calculated from an 

increase in isotopically enriched MMHg relative to available Hg(II) substrate. However, in their 

experiments the available Hg(II) substrate was measured in separate bottle experiments [Lehnherr 

et al, 2011]. Although we were unable to calculate demethylation rates in the majority of samples, 

methylation potential was seen in 0.2 µm filtered water, and often in excess of methylation 

potential in unfiltered samples, suggesting that a generalized loss of Hg(II) in not an accurate 

representation of Hg(II) availability for calculations for similar dual isotope tracer experiments. 
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Figures and Figure Legends  
 
Figure 1: Map of stations where mercury methylation incubations were performed in the 
Pacific Ocean along the Metzyme cruise track. Measurements of potential methylation were 
performed at 17°N, 8°N, 0°, and 12°S (circled) in the Tropical and Equatorial Pacific Ocean. The 
cruise track spanned a large gradient in hydrographic parameters and ambient methylated Hg 
species concentrations. 
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Figure 2: Reduction of mercury in incubations of marine waters amended with 
methylcobalamin. Chromatograms of ICPMS intensity for Hg isotopes monitored to trace 
methylation and demethylation, 198Hg (black), 200Hg (grey), 202Hg (dotted) from two replicate 
bottles of t0 unfiltered water from the North Pacific (17°N). In one replicate (A), Hg° (1), MMHg 
(2,), and Hg(II) (3) peaks are quantifiable. In the second replicate (B) a substantial amount of 
202Hg(II) is lost to reduction and is apparent in the increase of the Hg(0) peak. None of the isotope 
traces in the resulting MMHg peak (2) are measurable relative to the baseline.   
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Figure 3: Concentrations of dissolved oxygen and and calculated values of apparent oxygen 
utilization at incubation stations. Dissolved oxygen concentrations (top panel) in intermediate 
waters are lowest in the North Pacific, increase in the Equatorial Pacific, and are highest in the 
South Pacific. Values of AOU (bottom panel) match closely with oxygen throughout cruise 
transect. At 12°S (Station 9), an unusual dissolved O2 depth profile showed two low dissolved O2 
depths (175 m and 400 m), both of which were used for incubation experiments.  
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Figure 4: Concentrations of dissolved total and methylated mercury at incubation stations. 
Methylated Hg (measured as [DMHg] and [MMHg]) concentrations are shown along cruise 
transect with incubation locations and depths indicated by stars. Incubations were performed at 
depths of the chlorophyll-a maximum and minimum dissolved O2 concentration from CTD data 
at each station. At 17°N (Station 1), MMHg concentrations were estimated from concentrations in 
incubations bottles.  
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Figure 5: Initial and total methylation of Hg(II) in Tropical Pacific waters. Methylation, 
calculated as the percentage of Me202Hg produced from available 202Hg(II) substrate from isotope 
spike additions, is shown for four stations along the Metzyme cruise track from the North to 
South Pacific. Methylation was measured in 0.2 µm filtered (0.2 µm) and unfiltered (un) from the 
chlorophyll maximum (CMX) and oxygen minimum (OMZ) at each station. At all stations, initial 
methylation (black bars) was measureable in t0 bottles relative and could account for the total 
methylation observed over 24-hour incubations (grey bars).  
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Figure 6: Methylated mercury production over a 36-hour time course in South Pacific 
waters. Methylation, calculated as the percentage of Me202Hg produced from available 202Hg(II) 
substrate from isotope spike additions, is shown for 6 time points over a 36-hour incubation time 
course at 12°S. Methylation was measured in 0.2 µm filtered (0.2 µm, black symbols) and 
unfiltered (un, white symbols) seawater from the chlorophyll maximum (CMX, circles) and 
oxygen minimum (OMZ, triangles) depths at this station. Higher resolution sampling reveals 
dynamic cycling between methylation and demethylation compared to net changes over 24-hour 
incubation periods (Figure 5). Demethylation of newly formed methylated Hg occurs after 6 
hours in unfiltered water from the oxygen minimum depth (white triangles) and is enhanced by 
the presence of particulate matter compared to 0.2 µm filtered water (black triangles) in which 
produced Me202Hg persists throughout the full incubation period.  
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Figure 7: Demethylation of monomethylmercury over a 36-hour time course incubation in 
South Pacific waters. Demethylation is measured as the loss of added MM198Hg over from 0.2 
µm filtered (0.2 µm, black symbols) and unfilterd (un, white symbols) waters from the 
chlorophyll maximum (CMX) and oxygen minimum (OMZ) depths at 12°S. Rapid demethylation 
of ~300 fM added MM198Hg spikes pre-equilibrated with natural ligands in filtered seawater was 
implied by the loss of added spike prior to fixation of t0 sample bottles for chlorophyll maximum 
waters (circles) and filtered oxygen minimum waters (black triangles). Quantitative 
demethylation was limited to unfilterd waters from the oxygen minimum depth (white triangles) 
at 12°S. 
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Figure 8 (following page): Methylation of mercury in treatment-amended incubations of 
water from chlorophyll maximum waters in the Tropical Pacific. Methylation, calculated as 
the percentage of Me202Hg produced from available 202Hg(II) substrate from isotope spike 
additions, for waters amended with additions of compounds thought to be involved with Hg(II) 
uptake and methylation normalized to unamended (un) samples. Treatments are abbreviated as 
follows: succinate (C), cobalt (Co), succinate and cobalt (CoC), McLane pump sections (punch), 
cobalt and cysteine (CoCys), cysteine (Cys), glutathione (GSH), methylcobalamin (B12), and 
cysteine and succinate (CysC). Grey bars in upper panel indicate incubation treatments that were 
not performed for filtered water. Only unfiltered waters (lower panel) from 12°S (yellow) were 
amended with treatments. The error bars represent one standard deviation from triplicate 
incubation bottles. 
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Figure 9 (following page): Methylation of mercury in treatment-amended incubations of 
water from oxygen minimum waters in the Tropical Pacific. Methylation, calculated as the 
percentage of Me202Hg produced from available 202Hg(II) substrate from isotope spike additions, 
for waters amended with additions of compounds thought to be involved with Hg(II) uptake and 
methylation normalized to unamended (un) samples. Treatments are abbreviated as follows: 
succinate (C), cobalt (Co), succinate and cobalt (CoC), McLane pump sections (punch), cobalt 
and cysteine (CoCys), cysteine (Cys), glutathione (GSH), methylcobalamin (B12), and cysteine 
and succinate (CysC). Grey bars in upper panel indicate incubation treatments that were not 
performed for filtered water. Only unfiltered waters (lower panel) from 12°S (yellow) were 
amended with treatments. The error bars represent one standard deviation from triplicate 
incubation bottles. 
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Figure 10: Relationships between methylation and measured MeHg and THg 
concentrations in Tropical Pacific waters. Initial methylation (black symbols) and 24-hour 
incubation methylation (grey symbols) from unfiltered waters from the chlorophyll maximum 
(CMX, left panels) and oxygen minimum (OMZ, right panels) depths in Tropical Pacific waters 
versus measured concentrations of total mercury (THg, top panels) and methylated mercury 
([DMHg] + [MMHg]). No clear relationship was observed between methylation and mercury 
species concentrations. 
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Figure 11: Calculated dissolved Hg(II) in the Tropical Pacific. Dissolved Hg(II) (pM) was 
calculated as the difference between THg and the sum of Hg(0), DMHg, and MMHg measured as 
distinct chemical species along Metzyme cruise track. In regions of high methylatedHg (500m at 
St 5, 500m at St 1), The close relationship observed in the North Pacific between methylated Hg 
concentrations and organic carbon remineralization rates implies methylation is limited by Hg(II) 
substrate delivery to depths of organic matter remineralization [Sunderland et al, 2009]. The 
persistence of dissolved Hg(II) in concentrations between 1-1.25 pM, suggests that methylation 
may not be limited by dissolved Hg(II) concentrations at these depths and is limited by additional 
factors such as Hg(II) availability or methyl donors. 
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Tables and Table Legends  
 
Table 1: Water column characteristics for Pacific Ocean waters from which potential 
mercury methylation rates were measured.  
 
Sta Depth 

(m) 
Temp 
(°C) 

Tempinc 
(°C)1 

O2diss 
(µmol/kg)  

AOU* 
(µmol/kg) 

THg 
(pM) 

DMHg 
(fM) 

MMHg 
(fM) 

17°N 1:3 mix 
120:150
2 

22 19-26 214:205 - 1:0.59 40:30 103 

17°N 500  7 13 20 282.9 1.66 40 3103 
8°N 75-80 21 23 218 - 0.32 30 3.5 
8°N 200 11 13 15 264.1 1.4 100 49.1 
0° 50 26 23 202 - 0.18 20 22.8 
0° 500 8 14 43 252 1.1 110 147.3 
12°S 60 28 13-16 207 - 0.22 0 26.2 
12°S 175 25 13-16 162 47.0 0.35 20 0 
12°S 400 11 13-16 116 163 0.67 40 42.4 
 

1Ranges represent monitored variations in temperature observed over incubation period. Values 
without ranges were constant for duration of incubation. 
 
2Water was mixed for CMX at Station 1 due to water budget limitations. 
 
3MMHg concentrations calculated from ambient 200Hg in t0 incubation bottles after subtraction 
of contribution from added MMHg spike. 
 
4Because station 9 displayed an unusual O2 depth profile, an additional low O2 depth was selected 
for non-amended incubations. 
 
*Note that values of AOU cannot be accurately determined in the upper water column due to the 
influence of gas exchange and mixing. Values for AOU in waters above 100 m are therefore not 
shown. 
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Table 2: Amendments tested for enhancement of mercury methylation. McLane punches 
were collected from matching stations as those used for incubation water collection and contain 
particles > 51 µm including organic matter, cells, and inorganic material. 
 
Treatment Final concentration 
McLane punches ½ of 2-cm punch 
Inorganic Co 500 pM 
C (as succinate) 1 mM 
Cysteine 10 nM 
Glutathione 10 nM 
Methylcobalamin 100 pM 
CoC 500 pM, 1 mM 
CoCys 500 pM, 10 nM 
CysC 10 nM, 1 mM 
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Table 3: Potential methylation rates from Tropical Pacific waters. Total potential methylation 
rates (M) calculated from t-1 to t24hr corrected for 202Hg(II) from diethylHg peak. Potential 
methylation rate constants (km) for production of methylated Hg ([DMHg] + [MMHg]) relative to 
isotopically enriched Hg(II) substrate in 0.2 µm filtered and unfiltered seawater from the Pacific 
Ocean. The errors given represent one standard deviation of triplicate bottle incubations. 
 
Station  Depth M-0.2 µm filt 

(x10-2 d-1) 
M-unfilt 
(x10-2 d-1) 

17°N CMX 0.39 ± 0.11 0.43 ± 0.02 
 OMZ 0.95 ± 0.08 0.64 ± 0.05 
8°N CMX 10.19 ± 0.98 5.71 ± 0.36 
 OMZ 7.40 ± 0.31 3.77 ± 1.54 
0° CMX 2.19 ± 0.20 1.74 ± 0.37 
 OMZ 1.00 ± 0.19 1.74 ± 0.47 
12°S CMX 0.69 ± 0.28 0.72 ± 0.02 
 OMZ2 0.20 ± 0.04 0.49 ± 0.08 
 OMZ 2.28 ± 0.70 1.12 ± 0.21 
 
2Because station 12°S displayed an unusual O2 depth profile, an additional low O2 depth was 
selected for non-amended incubations. 
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Chapter 6 
Conclusions 
 
 Despite longstanding debate over the importance of monomethylmercury (MMHg) 

production in the marine water column relative to transport from coastal sediments, few direct 

measurements have been performed to quantify these processes in open ocean locations. 

Measurements of potential methylation and demethylation rates provide quantitative constraints 

on the magnitude of in situ MMHg production. However, we present only the third report of these 

measurements in marine systems. In addition, we are the first to incorporate experiments that 

probe potential mechanisms for environmental conditions that lead to MMHg production in open 

ocean waters.  

 Our experimental design incorporated pre-equilibration of concentrated spikes of 

isotopically enriched Hg and MMHg. Previous measurements have relied on additions of MMHg 

and, especially, Hg well in excess of ambient concentrations [Lehnherr et al, 2011] that are added 

bound to chloride ligands [Lehnherr et al, 2011; Monperrus et al, 2007]. Because isotope tracer 

experiments require additions of exogenous Hg, we aimed to add low concentrations of spikes 

that more closely mimic the Hg species that a parcel of ocean water would encounter in situ. Even 

low concentrations of pre-equilibrated spike underwent methylation and demethylation within 

minutes of introduction, suggesting that methylation in marine waters is widespread and dynamic, 

regardless of the ambient concentrations of methylated Hg species. 

 We measured potential methylation rates from Hg(II) in waters across large gradients of 

oxygen utilization, primary productivity, and ambient Hg(II) and MMHg concentrations. Notably, 

in oligotrophic waters in both the South Pacific and the Sargasso Sea, we observed significant 

methylation potential in filtered waters. In addition, the only methylation attributed to cellular 

processes was observed in oxygen minimum waters of the Sargasso Sea. These findings are 

inconsistent with known mechanisms of MMHg production in anoxic sediments, which occurs 

primarily by cellular processes in anaerobic bacteria [Gilmour et al, 2013]. We also did not see 

significant abiotic methylation after addition of methylcobalamin, despite its ability to methylate 

Hg in buffered pH 5 solutions [Jiminez-Martinez, 2013]. Combined, these results suggest that Hg 

methylation in marine waters is controlled by factors specific to these environments.  

Time course experiments in both oligotrophic regions suggest that rapidly produced MMHg is 

short lived, especially in the presence of particulate matter. This is contrary to  observed 

bioaccumulation factors in marine particulate matter, > 104 [Hammerschmidt et al, 2013], relative 
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to dissolved Hg concentrations. How particles can both promote demethylation and serve as the 

first step of Hg bioaccumulation, the step that results in the highest bioaccumulation factor, is an 

important question that should be addressed in future open ocean studies of Hg speciation.  

 Both our Hg speciation data in the Tropical Pacific as well as our methylation rate 

measurements suggest that a simple model of marine Hg methylation is not comprehensive 

enough to account for differences among ocean basins. Although methylation is likely ultimately 

limited by Hg(II) substrate, the strong relationship between methylated Hg concentrations and 

organic carbon remineralization rates observed in the North Pacific [Sunderland et al, 2009] does 

not extend into the Equatorial Pacific (Figure 1). Instead, factors that influence the availability of 

Hg(II) to methylation appear to limit DMHg and MMHg production even in low oxygen waters. 

We have identified denitrification as a likely control on THg availability for methylation (Figure 

2). Although some sulfate-reducing bacteria appear to methylate Hg(0) directly in culture studies 

[Hu et al, 2013], this does not appear to occur in the low oxygen regions of the marine water 

column as a region of strong denitrification observed in the Tropical Pacific suggested that 

reduction inhibited MMHg and DMHg production [Munson—this work, Chapter 4]. In addition, 

the reduction induced by methylcobalamin additions to filtered and unfiltered seawater prohibited 

methylation [Munson—this work, Chapter 5], making Hg(0) an unlikely substrate for marine Hg 

methylation.  

 In our amended methylation rate measurement experiments, we aimed to test whether 

individual compounds limit Hg methylation, especially in high productivity waters where cells 

compete for limited dissolved nutrients. Compound addition appeared to induce methylation in 

both filtered and unfiltered water, which might implicate methyl transfer to Hg(II) facilitated by 

ligand binding, or another unidentified process. Whatever the mechanism of this rapid 

methylation, it appears to be distinct from cellular methylation, as indicated by the steady 

production of MeHg over 24-hour incubations in unfiltered low oxygen waters from the Sargasso 

Sea [Munson—this work, Chapter 3].  

 The relative importance of rapid methylation, which occurs in the absence of cells in our 

filtered water incubations, and cellular methylation, that was measured only in the Sargasso Sea, 

for bioaccumulation is beyond the scope of our current study. However, future work should 

address to what extent these seemingly distinct processes impact MMHg uptake and transfer in 

marine biota.  
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 Despite the low concentrations of Hg species measured in Tropical Pacific waters, we 

observed active methylation in these waters. If the resulting MMHg is incorporated into biomass, 

increases in Hg emissions since the Industrial Revolution will ultimately be transferred from 

marine waters to marine food webs and pose increasing threats to human health. 

 

References 

 
Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. 
Johs, R. A. Hurt Jr., K. L. Bailey, and D. A. Elias (2013) Mercury methylation by novel 
microorganisms from new environments, Environ. Sci. Technol., 47, 11810-11820. 
 
Hammerschmidt, C. R., M. B. Finiguerra, R. L. Weller, and W. F. Fitzgerald (2013) 
Methylmercury accumulation in plankton on the continental margin of the Northwest Atlantic 
Ocean, Environ. Sci. Technol., 47, 3671-3677. 
 
Hu, H., H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. Feng, D. A. Elias, L. Liang, and B. Gu 
(2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat. 
Geosci., 6, 751-754. 
 
Jiménez-Moreno, J., V. Perot, V. N. Epov, M. Monperrus, and D. Amouroux (2013) Chemical 
kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin 
in aqueous chloride media, Chem. Geol., 336, 26-36. 
 
Lehnherr, I., V. L. St. Louis, H. Hintelmann, and J. Kirk (2011) Methylation of inorganic 
mercury in polar waters. Nat. Geosci., 4, 298-302. 

Monperrus, M., E. Tessier, D. Amouroux, A. Leynaert, P. Huonnic, and O. F. X. Donard (2007) 
Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of 
the Mediterranean Sea. Mar. Chem. 107, 49-63. 

 
Sunderland, E. M., D. P. Krabbenhoft, J. W. Moreau, S. A. Strode, and W. M. Landing (2009) 
Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data 
and models. Global Biogeochem. Cy. 23:GB2010. 
 

 

 

 

 

 



	
   146	
  

Figure 1: Methylated mercury concentrations in marine intermediate waters (100-1000 m) 
versus organic carbon remineralization rates. The correlation between metylated Hg and 
OCRR, first observed in North Pacific Intermediate Waters by Sunderland et al, 2009 (blue) does 
not appear to exist in all ocean basins. Concentrations of methylated Hg measured at two off-
shore stations of in the North Atlantic (red, Bowman et al, 2013) appear to increase with ORCC, 
coastal stations have low methylated Hg concentrations across the full OCRR range. Methylated 
Hg concentrations and OCRR are low in Indian waters (purple, Sunderland et al, 2011). 
Intermediate concentrations of methylated Hg measured in waters from the Tropical Pacific 
(white, Metzyme, Munson—this work, chapter 3) are found at intermediate OCRR values.	
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Appendix I 
Methylation and Demethylation Rate Measurements 

Adapted from: Hintelmann and Evans, 1997 and Hintelmann and Ogrinc, 2003. 

 The 7 stable isotopes of Hg allow for simultaneous detection of multiple tracers of Hg 
species transformations. In the experiments described in Chapters 4 and 5, we used isotopically 
enriched Hg species to trace methylation and demethylation in water samples. By adding Hg(II) 
and MMHg, each enriched in different isotopes, we were able to simultaneously track 
methylation and demethylation within the same bottle over the incubation period. 

 Using 202Hg(II), we measured the following methylation reaction: 

    

€ 

202Hg2+ +CH3
2− → CH3

202Hg+   

 Using CH3
198Hg+, we measured the following demethylation reaction: 

    

€ 

CH3
198Hg+→198Hg2+ +CH3

2−  

 These two reactions were monitored by quantifying the isotopic composition of the 
CH3Hg+ peak using a linked CVAFS-ICPMS protocol modeled after descriptions by Hintelmann 
and Evans (1997) and the USGS Wisconsin District Mercury Laboratory, Madison, Wisconsin [as 
used by DeWild et al, 2002]. 

Analytical Setup:  

The hardware of the linked system is easily set up. The outlet of the 2700 Tekran Automated 
Methylmercury Analyzer can be attached to a y-junction or the side arm of a t-junction to join the 
ICPMS sample gas flow, typically ~1 L/min. The two Thermo Element 2 instruments in the 
WHOI Plasma Facility were used in these experiments. The Tekran 2700 was transported and set 
up on a trolley. The Tekran instrument was controlled by the Lamborg Lab MMHg computer and 
run off of a separate Ar gas cylinder. Troubleshooting the linked set-up typically requires careful 
attention to the backpressure from the ICPMS system, which may result due to the flow 
differential between the CVAFS and ICPMS systems.  

 When connected to the CO3
2- Thermo Element 2, the ICPMS data collection could be 

triggered by an electrical signal from the Tekran 2700 prior to heating of the Tenax trap. A 
command was added to the ETF of the Tekran 2700. In the Sequence Editor of the ICPMS 
software, the external signal was added to the sample template and the sequence was set to 
continue automatically. 

 In order to tune the instrument, a glass U was inserted between the tubing from the 
Tekran 2700 cell outlet and the y-junction into the ICPMS sample gas flow. The glass U 
contained a drop of Hg contained in a small capped plastic cylinder. The volatile Hg(0) carried 
through the U by the Tekran 2700 provided sufficient signal for instrument tuning. Because of the 
high Hg signal of the standard relative to sample concentrations, the ICPMS signal was allowed 
to re-establish a baseline for >30 minutes prior to analyzing standards or samples. 
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 Although not used for these experiments, the tubing (type?) between the CVAFS and the 
ICPMS can be heated by means of a heated strip to avoid loss of Hg signal to the walls of the 
tubing.  

 Sample and standard CH3Hg+ derivitization was performed in the Watson Building clean 
room and bottles were transported to the ICPMS lab for analysis. Between 8-10 samples were 
prepared at a time. 

Data Analysis:  

During analysis, the Thermo ICPMS software yields a chromatogram of individual Hg isotopes. 
The method was written to maximize the number of data points collected within a period of time 
that corresponded to the chromatogram produced by the Tekran 2700. A .txt file of the counts per 
second (cps) of each of the 4-7 Hg isotopes measured at each time point was produced for each 
sample. The software allows users to manually integrate specific peak windows. However, for 
ease of data analysis in the presented analyses, MATLAB files (written by C. H. Lamborg) were 
used to extract peak integrations from .txt files of the chromatographs of the peak intensity 
produced by the ICPMS. These MATLAB files consisted of: 

 chromcrunch.m 

 chromint.m 

These operations yielded integrations of the separated Hg species Hg(0), methylethylHg, and 
diethylHg that correspond to 4-7 isotopes of Hg(0), CH3Hg+, and Hg2+. Four isotopes (198, 199, 
200, and 202) were monitored for most measurements (Chapter 4, excluding +B12 treatments), 
while all 7 Hg isotopes were monitored for later measurements (Chapter 5).  

 The output of the Matlab files were .txt files containing sample peak integrations that 
were adapted into .xlsx spreadsheets for calculations. Peak areas for each isotope were corrected 
for reagent contributions from daily reagent blanks. For methylation rate measurements, the blank 
corrected Hg isotope abundances from the separated CH3Hg+ peak were used to measure changes 
in MMHg from demethylation and methylation. The integrated 202Hg in the Hg2+ peak was 
monitored to determine changes in Hg2+ substrate availability over the course of the incubation 
(see below). 

 Once peak integrations were determined, we input the following mathematical 
calculations into the integrations spreadsheets to yield transformation rates: 

 According to Hintelmann and Evans, 1997, the total concentration of a specified isotope 
is the sum of that isotope in ambient solutions plus concentrations of that isotope in tracer 
solutions. 

 Σ1I = 1a  + 1b…+ 1n 

 Σ2I = 2a  + 2b…+ 2n 

 ΣiI = ia  + ib…+ in 

where a-n denote different solutions and 1-i represent different isotopes. Thus for our 
experiments, the sum of all contributions of 202CH3Hg+ to our bulk measurement: 



	
   151	
  

 Σ202I = 202sw  + 202meth + 292inorg 

where   
 202ΣI is the sum of 202Hg 
 sw is the ambient seawater in each incubation bottle to which isotope solutions are added  
 meth is the solution of enriched CH3

198Hg+ from which the CH3
198Hg+ spike is added 

 inorg is the solution of enriched 202Hg2+ from which the 202Hg2+ spike is added 
 
This allows for full consideration of any contribution of rare isotopes in enriched solutions (such 
as the small % of 202CH3Hg+ in the enriched 198CH3Hg+ solution). 

The relative contribution of each isotope is expressed as relative abundance in each source (sw, 
meth, inorg) to the most abundant isotope: 

 
200sw/200sw = R11 = 1  200meth/198meth = R21  200inorg/202inorg = R13  
198sw/200sw = R21  198meth/198meth = R22 = 1 198inorg/202inorg = R23 

202sw/200sw = R31  202meth/198meth = R32  202inorg/202inorg = R33 = 1 

 

As a result, equation X can be rewritten after substitution with the ratio notation: 

 Σ1I = 1a + R12
2b + R1i

in 

Or for our example in equation X: 

 Σ202I = R31
200sw  + R32

198meth + 292inorg 

As a result, by knowing the well-defined Hg isotope ratios of ambient seawater solution (sw: 
assumed natural abundance of Hg isotopes) and of the CH3Hg+ spike solution (meth; defined by 
the enriched isotopes in the starting enriched HgO species and altered by any changes due to pre-
equilibration), we can calculate the 202CH3Hg+ produced from the Hg(II) spike solution (inorg) by 
measuring the total 202Hg (Σ202I) present in the separated CH3Hg+ peak determined by CVAFS-
ICPMS. 

 Hintelmann and Evans (1997) and Hintelmann and Ogrinc (2003) use certified values of 
enriched HgO to determine the isotope ratios of spike solutions. In our experiments, both spike 
solutions, 198CH3Hg+ (meth) and 202Hg(II) (inorg) were incubated in filtered seawater for 24-hours 
prior to addition to experimental bottle incubations in order to complex the Hg species to 
naturally occurring ligands in the seawater matrix. As a result, the isotope ratios of HgO certified 
by the manufacturer could not be used in our calculations. Instead, values for spike ratios were 
measured directly from the equilibrated spike solutions during sample analysis and used for 
calculations. IUPAC values were used for natural abundance ratios assumed for ambient 
seawater. 
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 The matrix inversion approach [Hintelmann and Ogrinc, 2007] presents the contributions 
of isotope tracers using the following representation of the equations outlined above [Hintelmann 
and Evans, 1997]: 

 AX=B 

With 

€ 

A =

1 R12 R13
R21 1 R23
R31 R32 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

X =

1sw
2meth
3inorg

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

B =

Σ1I

Σ2I

Σ3I

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥    

 

Where the unknown contributions of the isotopes from various sources (sw, meth, inorg) that 
contribute to the total isotopic signal, I, of each isotope observed in the CH3Hg+ peak (ex: Σ198I) 
can be solved for in the vector X using the inverse of A, as represented by the following: 

 X = A-1B 

 The matrix calculation was entered into the spreadsheet to calculate resulting 
contributions of 200Hg, 198Hg, and 202Hg from the solutions sw, meth, and inorg into the bulk 
CH3Hg+ pool. 

 Within the spreadsheet, the raw cps intensity values for 200Hg, 198Hg, 202Hg from the 
CH3Hg+ peaks (and 199Hg when used as a isotope dilution standard) were first corrected for 
contributions from reagent blanks measured daily. Blank corrected signals were then input as the 
vector B in equation X. After solving, the results of vector X were converted to concentrations of 
CH3Hg+ from standard curves of CH3Hg+ analyzed daily. These values represent the CH3

202Hg+ 
formed from methylation and the CH3

198Hg+ remaining after demethyaltion for each time point. 

 Potential methylation and demethylation rate constants were calculated using a variety of 
models of 202Hg(II) substrate availability. 

 Initially, 202Hg(II) substrate availability was assumed to be constant over the course of 
the incubation, as was done by Monerrus et al, 2007. As a result, values for produced MM202Hg 
were calculated and shown in units of (% d-1) referring to the percent of total 202Hg(II) spike 
added that was methylated over the course of the 24-hour incubation.  

 However, Lehnherrr et al, 2011 dispute the assumption that Hg(II) substrate 
concentrations are constant, despite the fact that he used significantly higher initial concentrations 
of Hg(II) substrate relative to ambient conditions. They therefore performed some experiments to 
determine how Hg(II) substrate availability changed over the course of their incubations. They 
found a decrease in Hg(II) added to filtered seawater over time in a series of separate experiments 
from their rate measurements. The values they present and use to calculate their potential rates 
correspond to their isotopically enriched MMHg relative to available enriched Hg(II). In order to 
calculate km values, they fit the Hg(II) substrate decay to a best fit line and also account for the 
“instantaneous” methylation observed in their t0 bottles. However, they do not indicate whether 
the source of the filtered water for their Hg(II) substrate availability determination was any of the 
stations where they measured potental rates nor do they indicate when these additional 
experiments were performed.  
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 Because we have the simultaneous ability to measure MMHg and Hg(II) as 
methylethylHg and diethylHg, we wanted to improve on the calculations of Lehnherr et al, 2011 
by calculating MM202Hg as a percentage of the 202Hg(II) substrate. First, I attempted to do this by 
dividing the matrix transformed MM202Hg signal by the bulk 202Hg(II) signal in the diethylHg 
peak for each bottle. However, the bulk 202Hg(II) value includes any ambient 202Hg(II) in those 
waters. Therefore, I took the integrations of the diethylHg peaks and used the same setup for the 
linear matrix calculations outlined above for MMHg and calculated the MM202Hg as a percent of 
the 202Hg(II) spike substrate. For most stations, 18N, 0, 12S, and BATS site, this resulted ~25% 
increases in values of MM202Hg/Hg(II) substrate (%) but did little to change the trends observed 
when the calculation included all 202Hg(II) including ambient. However, for the 8N station, where 
the highest concentrations of ambient Hg(II) were measured, the values for km went from being 
below detection to being the highest measured along the entire cruise track. This makes sense. 
With more Hg(II) available, the denominator of MM202Hg/Hg(II) substrate (%) when it included 
all available 202Hg(II) was quite large, and overwhelmed any signal specific to the added isotope 
spikes. After using the linear matrix transformation to differentiate between the 202Hg(II) 
contributed by the spike and that from ambient Hg(II) in seawater, the value of MM202Hg/Hg(II) 
substrate (%) decreased correspondingly. 

 In all cases, the calculation of kd, the potential demethylation rate constant, was much 
simpler. For this calculation, we used a similar assumption as that made by Lehnherr et al, 2011 
and approximate demethylation as a first-order reaction.  
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chromcrunch.m 

%function chromcrunch 
%this version meant for use with an ICP method that looks for Hg-
198, -199, 
%-200 and -202. 
% chl july 2012 
%launch user interface to get the file names for data to process. 
%downloaded from matlab exchange 12/2011 
filelist=uigetfile_n_dir; 
  
% get ready to write file later 
filename = 'icpresults.txt'; 
fid = fopen(filename, 'w'); 
  
  
%loop to process each of the selected files 
for w=1:length(filelist) 
     
%import the data from an icp txt file. creates a structure with 
the first 5 
%header lines stored in field "textdata" and the counts for each 
isotope in 
%the field "data". 
%filename 
    A=importdata(filelist{w},'\t',5); 
     
%start writing the output file line-by-line 
%first with the filename and isotope...does it 4 times for each 
of the 4 
%isotopes. 
%then, extracts the isotopes from the "data" field and prints 
them to the 
%file, isotope by isotope in the transposed direction (from left 
to right, 
%instead of top to bottom. 
    for i=1:4 
        fprintf(fid, '%s', filelist{w}); 
        if i==1 
            fprintf(fid, '\t%d', 198); 
        elseif i==2 
            fprintf(fid, '\t%d', 199); 
        elseif i==3 
            fprintf(fid, '\t%d', 200); 
        else 
            fprintf(fid, '\t%d', 202); 
        end 
         
        x=i+1; 
        fprintf(fid, '\t%d', A.data(:,x)'); 
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        fprintf(fid, '\n'); 
    end 
  
end 
  
%when done, closes the file.     
fclose(fid); 
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chromint.m 

%chromint 
%chl july 2012 
  
clear all; 
  
%set the start and endpoints for integration here 
srtpts=[28 47 62]; 
endpts=[45 61 90]; 
  
%determine peak widths 
wdth=endpts-srtpts+1; 
  
%import the combined results file 
filename=uigetfile('*.txt'); 
A=importdata(filename); 
  
% get ready to write file later 
filename = 'icpintegrations.txt'; 
fid = fopen(filename, 'w'); 
  
  
fprintf(fid, 'Sample \t Isotope \t Hg(0) Area \t MMHg Area \t 
Hg(II) Area \t\n'); 
  
%smooth the data before integration 
Asmooth=[]; 
windowSize=5; 
for j=1:length(A.textdata) 
    
Asmooth(j,:)=filter(ones(1,windowSize)/windowSize,1,A.data(j,2:en
d)); 
end 
  
  
for i=1:length(A.textdata) 
    fprintf(fid, '%s', A.textdata{i}); 
    fprintf(fid, '\t%d', A.data(i,1)); 
     
    hgoarea=sum(Asmooth(i,srtpts(1):endpts(1)))-
mean([Asmooth(i,srtpts(1)) Asmooth(i,endpts(1))])*wdth(1); 
    mmhgarea=sum(Asmooth(i,srtpts(2):endpts(2)))-
mean([Asmooth(i,srtpts(2)) Asmooth(i,endpts(2))])*wdth(2); 
    hg2area=sum(Asmooth(i,srtpts(3):endpts(3)))-
mean([Asmooth(i,srtpts(3)) Asmooth(i,endpts(3))])*wdth(3); 
     
    fprintf(fid, '\t%d', hgoarea); 
    fprintf(fid, '\t%d', mmhgarea); 
    fprintf(fid, '\t%d', hg2area); 
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    fprintf(fid, '\n'); 
     
end 
  
     
 


