245 research outputs found

    Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer - synthesis, physicochemical characterisation and in vitro evaluation

    Get PDF
    Metastatic prostate cancer is a leading cause of cancer-related death in men and current chemotherapies are largely inadequate in terms of efficacy and toxicity. Hence improved treatments are required. The application of siRNA as a cancer therapeutic holds great promise. However, translation of siRNA into the clinic is dependent on the availability of an effective delivery system. Gold nanoparticles (AuNPs) are known to be effective and non-toxic siRNA delivery agents. In this study, a stable gold nanosphere coated with poly(ethylenimine) (PEI) was prepared to yield PEI capped AuNPs (Au-PEI). The PEI was further conjugated with the targeting ligand anisamide (AA, is known to bind to the sigma receptor overexpressed on the surface of prostate cancer cells) to produce an anisamide-targeted nanoparticle (Au-PEI-AA). The resulting untargeted and targeted nanoparticles (Au-PEI and Au-PEI-AA respectively) were positively charged and efficiently complexed siRNA. Au-PEI-AA mediated siRNA uptake into PC3 prostate cancer cells via binding to the sigma receptor. In addition, the Au-PEI-AA·siRNA complexes resulted in highly efficient knockdown of the RelA gene (∼70%) when cells were transfected in serum-free medium. In contrast, no knockdown was observed in the presence of serum, suggesting that adsorption of serum proteins inhibits the binding of the anisamide moiety to the sigma receptor. This study provides (for the first time) proof of principle that anisamide-labelled gold nanoparticles can target the sigma receptor. Further optimisation of the formulation to increase serum stability will enhance its potential to treat prostate cancer

    Biomimetic gold nanocomplexes for gene knockdown - will gold deliver dividends for siRNA nanomedicines?

    Get PDF
    RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have immense potential for the treatment of a wide range of diseases. However, pharmacokinetic and pharmacodynamic studies have revealed that these therapeutic agents have poor bioactivity due to a number of factors, including insufficient plasma drug levels, short plasma half-lives, renal clearance, and hepatic metabolism. Non-viral delivery may facilitate the clinical application of siRNA-based therapeutics by helping to overcome these barriers. Recently, the potential of gold nanoparticles (AuNPs) as multifunctional carriers for transporting drugs, proteins, and genetic materials has been demonstrated. In this review, some of the key properties of AuNPs relevant to siRNA delivery, such as physical properties and surface chemistry have been described. In addition, the ability of AuNP-based formulation strategies to successfully overcome delivery barriers associated with siRNA, and the potential for this material to translate into safe and effective nanomedicines are critically discussed

    Internal states as a source of subject-dependent movement variability and their representation by large-scale networks

    Full text link
    AbstractA human’s ability to adapt and learn relies on reflecting on past performance. Such reflections form latent factors called internal states that induce variability of movement and behavior to improve performance. Internal states are critical for survival, yet their temporal dynamics and neural substrates are less understood. Here, we link internal states with motor performance and neural activity using state-space models and local field potentials captured from depth electrodes in over 100 brain regions. Ten human subjects performed a goal-directed center-out reaching task with perturbations applied to random trials, causing subjects to fail goals and reflect on their performance. Using computational methods, we identified two internal states, indicating that subjects kept track of past errors and perturbations, that predicted variability in reaction times and speed errors. These states granted access to latent information indicative of how subjects strategize learning from trial history, impacting their overall performance. We further found that large-scale brain networks differentially encoded these internal states. The dorsal attention network encoded past errors in frequencies above 100 Hz, suggesting a role in modulating attention based on tracking recent performance in working memory. The default network encoded past perturbations in frequencies below 15 Hz, suggesting a role in achieving robust performance in an uncertain environment. Moreover, these networks more strongly encoded internal states and were more functionally connected in higher performing subjects, whose learning strategy was to respond by countering with behavior that opposed accumulating error. Taken together, our findings suggest large-scale brain networks as a neural basis of strategy. These networks regulate movement variability, through internal states, to improve motor performance.Key pointsMovement variability is a purposeful process conjured up by the brain to enable adaptation and learning, both of which are necessary for survival.The culmination of recent experiences—collectively referred to as internal states—have been implicated in variability during motor and behavioral tasks.To investigate the utility and neural basis of internal states during motor control, we estimated two latent internal states using state-space representation that modeled motor behavior during a goal-directed center-out reaching task in humans with simultaneous whole-brain recordings from intracranial depth electrodes.We show that including these states—based on error and environment uncertainty—improves the predictability of subject-specific variable motor behavior and reveals latent information related to task performance and learning strategies where top performers counter error scaled by trial history while bottom performers maintain error tendencies.We further show that these states are encoded by the large-scale brain networks known as the dorsal attention network and default network in frequencies above 100 Hz and below 15 Hz but found neural differences between subjects where network activity closely modulates with states and exhibits stronger functional connectivity for top performers.Our findings suggest the involvement in large-scale brain networks as a neural basis of motor strategy that orchestrates movement variability to improve motor performance.</jats:list-item

    Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21

    Get PDF
    Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e−8) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e−11). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer pre-disposition locus

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Full text link
    BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite‐based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD ≥ 1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome‐wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13–25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC , an important gene in PC biology. CONCLUSIONS These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer. Prostate 72:410–426, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90245/1/21443_ftp.pd

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    The Role of Whole Blood Impedance Aggregometry and Its Utilisation in the Diagnosis and Prognosis of Patients with Systemic Inflammatory Response Syndrome and Sepsis in Acute Critical Illness

    Get PDF
    Objective: To assess the prognostic and diagnostic value of whole blood impedance aggregometry in patients with sepsis and SIRS and to compare with whole blood parameters (platelet count, haemoglobin, haematocrit and white cell count). Methods: We performed an observational, prospective study in the acute setting. Platelet function was determined using whole blood impedance aggregometry (multiplate) on admission to the Emergency Department or Intensive Care Unit and at 6 and 24 hours post admission. Platelet count, haemoglobin, haematocrit and white cell count were also determined. Results: 106 adult patients that met SIRS and sepsis criteria were included. Platelet aggregation was significantly reduced in patients with severe sepsis/septic shock when compared to SIRS/uncomplicated sepsis (ADP: 90.7±37.6 vs 61.4±40.6; p<0.001, Arachadonic Acid 99.9±48.3 vs 66.3±50.2; p = 0.001, Collagen 102.6±33.0 vs 79.1±38.8; p = 0.001; SD ± mean)). Furthermore platelet aggregation was significantly reduced in the 28 day mortality group when compared with the survival group (Arachadonic Acid 58.8±47.7 vs 91.1±50.9; p<0.05, Collagen 36.6±36.6 vs 98.0±35.1; p = 0.001; SD ± mean)). However haemoglobin, haematocrit and platelet count were more effective at distinguishing between subgroups and were equally effective indicators of prognosis. Significant positive correlations were observed between whole blood impedance aggregometry and platelet count (ADP 0.588 p<0.0001, Arachadonic Acid 0.611 p<0.0001, Collagen 0.599 p<0.0001 (Pearson correlation)). Conclusions: Reduced platelet aggregometry responses were not only significantly associated with morbidity and mortality in sepsis and SIRS patients, but also correlated with the different pathological groups. Whole blood aggregometry significantly correlated with platelet count, however, when we adjust for the different groups we investigated, the effect of platelet count appears to be non-significant

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Get PDF
    In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer remains largely incomplete. In a previous microsatellite-based linkage scan of 1233 prostate cancer (PC) families, we identified suggestive evidence for linkage (i.e. LOD≥1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members
    corecore