18 research outputs found
Recommended from our members
Identifying phenotypic expansions for congenital diaphragmatic hernia plus (CDH+) using DECIPHER data.
Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development
The clinical utility of molecular diagnostic testing for primary immune deficiency disorders: a case based review
Primary immune deficiency disorders (PIDs) are a group of diseases associated with a genetic predisposition to recurrent infections, malignancy, autoimmunity and allergy. The molecular basis of many of these disorders has been identified in the last two decades. Most are inherited as single gene defects. Identifying the underlying genetic defect plays a critical role in patient management including diagnosis, family studies, prognostic information, prenatal diagnosis and is useful in defining new diseases. In this review we outline the clinical utility of molecular testing for these disorders using clinical cases referred to Auckland Hospital. It is written from the perspective of a laboratory offering a wide range of tests for a small developed country
A case of partial trisomy 4p syndrome presenting as severe hydronephrosis in utero
We describe the phenotypic features in a newborn infant with an unbalanced translocation 46,XY, der(22) inv(4) (p14p16.1) t(4;22) (p15.1;q13.31)pat. The phenotype was consistent with partial trisomy 4p syndrome. Severe bilateral hydronephrosis was diagnosed at a 31 week prenatal ultrasound scan. Both the patient phenotype and the partial trisomy are unusual, the latter due to the complex nature of the chromosomal rearrangement.</p
E-Cigarettes for Immediate Smoking Substitution in Women Diagnosed with Cervical Dysplasia and Associated Disorders
The aim of this study was to determine if 31 women with cervical dysplasia and associated conditions exacerbated by smoking would be successful substituting cigarettes with their choice of either nicotine replacement therapy (NRT) or electronic cigarettes (EC). Women received motivational interviewing and tried both NRT and ECs, choosing one method to use during a six-week intervention period. Daily cigarette consumption was measured at baseline, six, and 12 weeks, with differences analyzed by the Wilcoxon signed-rank test. Study analysis consisted only of women choosing to use ECs (29/31), as only two chose NRT. At the 12-week follow-up, the seven day point prevalence abstinence from smoking was 28.6%, and the median number of cigarettes smoked daily decreased from 18.5 to 5.5 (p < 0.0001). The median number of e-cigarette cartridges used dropped from 21 at the six-week follow-up to 12.5 at the 12-week follow-up. After initiating EC use, women at risk for cervical cancer were able to either quit smoking or reduce the number of cigarettes smoked per day. Although a controlled trial with a larger sample size is needed to confirm these initial results, this study suggests that using ECs during quit attempts may reduce cigarette consumption
Clinical features, molecular results, and management of 12 individuals with the rare arthrochalasia Ehlers‐Danlos syndrome
Arthrochalasia Ehlers‐Danlos syndrome (aEDS) is a rare autosomal dominant connective tissue disorder that is characterized by congenital bilateral hip dislocations, severe generalized joint hypermobility, recurrent joint (sub)luxations, and skin hyperextensibility. To date, 42 patients with aEDS have been published. We report 12 patients with aEDS from 10 families with 6 unpublished individuals and follow‐up data on 6 adult patients. The clinical features are largely comparable with patients reported in the literature. Most (n = 10) patients had variants leading to (partial) loss of exon 6 of the COL1A1 or COL1A2 genes. One patient did not have a previously reported likely pathogenic COL1A1 variant. Data regarding management were retrieved. Hip surgery was performed in 5/12 patients and 3/12 patients underwent spinal surgery. As much as 4/12 patients were wheelchair‐bound or unable to walk unaided. Fractures were present in 9/12 individuals with 1 patient requiring bisphosphonate treatment. Echocardiograms were performed in 10 patients and 2 individuals showed an abnormality likely unrelated to aEDS. One patient gave birth to two affected children and went through preterm labor requiring medication but had no additional complications. Of the eight adults in our cohort, the majority entered a career. Our data point toward a genotype–phenotype relationship with individuals with aEDS due to pathogenic COL1A1 variants causing complete or partial loss of exon 6 being more severely affected regarding musculoskeletal features. There is a significant lack of knowledge with regard to management of aEDS, particularly in adulthood. As such, systematic follow‐up and multidisciplinary treatment is essential
UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism
The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones
Delineation of the 3p14.1p13 Microdeletion Associated With Syndromic Distal Limb Contractures
International audienceDistal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20–25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 micro-deletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously reported cases with a precise mapping of the deletions, documented a 250 kb smallest region of overlap (SRO) necessary for DLC. This region contained one gene, EIF4E3, the first three exons of the FOXP1 gene, and an intronic enhancer of FOXP1 named hs1149. Sanger sequencing and locus quantification of hs1149, EIF4E3, and FOXP1 in a cohort of 11 French patients affected by DLC appeared normal. In conclusion, we delineate a new microdeletion syndrome involving the 3p14.1p13 locus and associated with DLC and severe developmental delay