11 research outputs found

    Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies

    Interventions targeting glucocorticoid-Krüppel-like factor 15-branched-chain amino acid signaling improve disease phenotypes in spinal muscular atrophy mice

    Get PDF
    The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling

    Dystrophin regulates peripheral circadian SRF signalling

    Get PDF
    Dystrophin is a sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD)[1, 2]. Dystrophin has an actin-binding domain [3–5], which specifically binds and stabilises filamentous (F)-actin[6], an integral component of the RhoA-actin-serum response factor (SRF)-pathway[7]. The RhoA-actin-SRF-pathway plays an essential role in circadian signalling whereby the hypothalamic suprachiasmatic nucleus, transmits systemic cues to peripheral tissues, activating SRF and transcription of clock target genes[8, 9]. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised that dystrophin loss causes circadian deficits. Here we show for the first time alterations in the RhoA-actin-SRF-signalling-pathway, in both dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios and nuclear MRTF, dysregulation of core clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from DMD patients harbouring an array of mutations. Further, disrupted circadian locomotor behaviour was observed in dystrophic mice indicative of disrupted SCN signalling, and indeed dystrophin protein was absent in the SCN of dystrophic animals. Dystrophin is thus a critically important component of the RhoA-actin-SRF-pathway and a novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation

    Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice

    No full text
    Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterised by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies for a key relationship between a SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients

    Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    No full text
    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA

    Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies

    Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation

    No full text
    Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans. Moreover, knockout of the gene encoding the D2R receptor (Drd2) in dopamine neurons has been shown to enhance the locomotor response to cocaine in mice. Therefore, we here tested the hypothesis that decreasing D2R expression in the VTA of adult rats, using shRNA knockdown, promotes addiction-like behavior in rats responding for cocaine or palatable food. Rats with decreased VTA D2R expression showed markedly increased motivation for both sucrose and cocaine under a progressive ratio schedule of reinforcement, but the acquisition or maintenance of cocaine self-administration were not affected. They also displayed enhanced cocaine-induced locomotor activity, but no change in basal locomotion. This robust increase in incentive motivation was behaviorally specific, as we did not observe any differences in fixed ratio responding, extinction responding, reinstatement or conditioned suppression of cocaine, and sucrose seeking. We conclude that VTA D2R knockdown results in increased incentive motivation, but does not directly promote other aspects of addiction-like behavior
    corecore