440 research outputs found

    Early pH Changes in Musculoskeletal Tissues upon Injury-Aerobic Catabolic Pathway Activity Linked to Inter-Individual Differences in Local pH

    Get PDF
    Local pH is stated to acidify after bone fracture. However, the time course and degree of acidification remain unknown. Whether the acidification pattern within a fracture hematoma is applicable to adjacent muscle hematoma or is exclusive to this regenerative tissue has not been studied to date. Thus, in this study, we aimed to unravel the extent and pattern of acidification in vivo during the early phase post musculoskeletal injury. Local pH changes after fracture and muscle trauma were measured simultaneously in two pre-clinical animal models (sheep/rats) immediately after and up to 48 h post injury. The rat fracture hematoma was further analyzed histologically and metabolomically. In vivo pH measurements in bone and muscle hematoma revealed a local acidification in both animal models, yielding mean pH values in rats of 6.69 and 6.89, with pronounced intra- and inter-individual differences. The metabolomic analysis of the hematomas indicated a link between reduction in tricarboxylic acid cycle activity and pH, thus, metabolic activity within the injured tissues could be causative for the different pH values. The significant acidification within the early musculoskeletal hematoma could enable the employment of the pH for novel, sought-after treatments that allow for spatially and temporally controlled drug release

    The Role of Immune Reactivity in Bone Regeneration

    Get PDF
    Bone is a complex organ with the capacity to regenerate. Even with this healing potential, healing results in fractured bone are unsatisfactory in a considerable patient cohort even with a good treatment regimen. These delayed healing cases encourage further research into possible new treatment approaches. The recently developed field of osteoimmunology addressing the tight interconnectivity of the skeletal system and the immune system could be a promising opportunity in this regard. In this review, the complexity of bone and the bone healing process are highlighted with an emphasis on the early healing phase. Specific immune cell subsets are considered for their potential to enhance bone healing and thus to develop new treatment strategies for patients in need

    Spatial Distribution of Macrophages During Callus Formation and Maturation Reveals Close Crosstalk Between Macrophages and Newly Forming Vessels

    Get PDF
    Macrophages are essential players in the process of fracture healing, acting by remodeling of the extracellular matrix and enabling vascularization. Whilst activated macrophages of M1-like phenotype are present in the initial pro-inflammatory phase of hours to days of fracture healing, an anti-inflammatory M2-like macrophage phenotype is supposed to be crucial for the induction of downstream cascades of healing, especially the initiation of vascularization. In a mouse-osteotomy model, we provide a comprehensive characterization of vessel (CD31+, Emcn+) and macrophage phenotypes (F4/80, CD206, CD80, Mac-2) during the process of fracture healing. To this end, we phenotype the phases of vascular regeneration-the expansion phase (d1-d7 after injury) and the remodeling phase of the endothelial network, until tissue integrity is restored (d14-d21 after injury). Vessels which appear during the bone formation process resemble type H endothelium (CD31hiEmcnhi), and are closely connected to osteoprogenitors (Runx2+, Osx+) and F4/80+ macrophages. M1-like macrophages are present in the initial phase of vascularization until day 3 post osteotomy, but they are rare during later regeneration phases. M2-like macrophages localize mainly extramedullary, and CD206+ macrophages are found to express Mac-2+ during the expansion phase. VEGFA expression is initiated by CD80+ cells, including F4/80+ macrophages, until day 3, while subsequently osteoblasts and chondrocytes are main contributors to VEGFA production at the fracture site. Using Longitudinal Intravital Microendoscopy of the Bone (LIMB) we observe changes in the motility and organization of CX3CR1+ cells, which infiltrate the injury site after an osteotomy. A transient accumulation, resulting in spatial polarization of both, endothelial cells and macrophages, in regions distal to the fracture site, is evident. Immunofluorescence histology followed by histocytometric analysis reveals that F4/80+CX3CR1+ myeloid cells precede vascularization

    Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing

    Get PDF
    A misdirected or imbalanced local immune composition is often one of the reasons for unsuccessful regeneration resulting in scarring or fibrosis. Successful healing requires a balanced initiation and a timely down-regulation of the inflammation for the re-establishment of a biologically and mechanically homeostasis. While biomaterial-based approaches to control local immune responses are emerging as potential new treatment options, the extent to which biophysical material properties themselves play a role in modulating a local immune niche response has so far been considered only occasionally. The communication loop between extracellular matrix, non-hematopoietic cells, and immune cells seems to be specifically sensitive to mechanical cues and appears to play a role in the initiation and promotion of a local inflammatory setting. In this review, we focus on the crosstalk between ECM and its mechanical triggers and how they impact immune cells and non-hematopoietic cells and their crosstalk during tissue regeneration. We realized that especially mechanosensitive receptors such as TRPV4 and PIEZO1 and the mechanosensitive transcription factor YAP/TAZ are essential to regeneration in various organ settings. This indicates novel opportunities for therapeutic approaches to improve tissue regeneration, based on the immune-mechanical principles found in bone but also lung, heart, and skin

    In vivo load measurements with instrumented implants

    Get PDF
    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies

    Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects

    Get PDF
    Background New tissue engineering strategies for bone regeneration need to be investigated in a relevant preclinical large animal model before making the translation into human patients. Therefore, our interdisciplinary group established a simplified large animal screening model for intramembranous bone defect regeneration in cancellous and cortical bone. Methods Related to a well-established model of cancellous drill hole defect regeneration in sheep, both the proximal and distal epimetaphyseal regions of the femur and the humerus were used bilaterally for eight drill hole cancellous defects (Ø 6 mm, 15 mm depth). Several improvements of the surgical procedure and equipment for an easier harvest of samples were invented. For the inclusion of cortical defect regeneration, a total of eight unicortical diaphyseal drill holes (6 mm Ø) were placed in the proximal-lateral and distal-medial parts of the metacarpal (MC) and metatarsal (MT) diaphyseal bone bilaterally. Acting moments within a normal gait cycle in the musculoskeletal lower limb model were compared with the results of the biomechanical in vitro torsion test until failure to ensure a low accidental fracture risk of utilized bones (ANOVA, p < 0.05). The model was tested in vivo, using thirteen adult, female, black-face sheep (Ø 66 kg; ± 5 kg; age ≥ 2.5 years). In a two-step surgical procedure 16 drill holes were performed for the investigation of two different time points within one animal. Defects were left empty, augmented with autologous cancellous bone or soft bone graft substitutes. Results The in vitro tests confirmed this model a high comparability between drilled MC and MT bones and a high safety margin until fracture. The exclusion of one animal from the in vivo study, due to a spiral fracture of the left MC bone led to a tolerable failure rate of 8 %. Conclusions As a screening tool, promising biomaterials can be tested in this cancellous and cortical bone defect model prior to the application in a more complex treatment site

    Histological Processing of CAD/CAM Titanium Scaffold after Long-Term Failure in Cranioplasty

    Get PDF
    Cranioplasty is a frequently performed procedure after craniectomy and includes several techniques with different materials. Due to high overall complication rates, alloplastic implants are removed in many cases. Lack of implant material osseointegration is often assumed as a reason for failure, but no study has proven this in cranioplasty. This study histologically evaluates the osteointegration of a computer-aided design and computer-aided manufacturing (CAD/CAM) titanium scaffold with an open mesh structure used for cranioplasty. A CAD/CAM titanium scaffold was removed due to late soft tissue complications 7.6 years after cranioplasty. The histological analyses involved the preparation of non-decalcified slices from the scaffold's inner and outer sides as well as a light-microscopic evaluation, including the quantification of the bone that had formed over the years. Within the scaffold pores, vital connective tissue with both blood vessels and nerves was found. Exclusive bone formation only occurred at the edges of the implant, covering 0.21% of the skin-facing outer surface area. The inner scaffold surface, facing towards the brain, did not show any mineralization at all. Although conventional alloplastic materials for cranioplasty reduce surgery time and provide good esthetic results while mechanically protecting the underlying structures, a lack of adequate stimuli could explain the limited bone formation found. CAD/CAM porous titanium scaffolds alone insufficiently osseointegrate in such large bone defects of the skull. Future research should investigate alternative routes that enable long-term osteointegration in order to reduce complication rates after cranioplasty. Opportunities could be found in mechano-biologically optimized scaffolds, material modifications, surface coatings, or other routes to sustain bone formation

    Immune Modulation to Enhance Bone Healing -A New Concept to Induce Bone Using Prostacyclin to Locally Modulate Immunity

    Get PDF
    Within an aging population, fracture incidences will rise and with the augmented risks of impaired healing the overall risk of delayed bone regeneration will substantially increase in elderly patients. Thus, new strategies to rescue fracture healing in the elderly are highly warranted. Modulating the initial inflammatory phase toward a reduced pro-inflammation launches new treatment options for delayed or impaired healing specifically in the elderly. Here, we evaluated the capacity of the prostacyclin analog Iloprost to modulate the inflammatory phase toward a pro-regenerative milieu using in vitro as well as in vivo model systems. In vitro, Iloprost administration led to a downregulation of potential unfavorable CD8+ cytotoxic T cells as well as their pro-inflammatory cytokine secretion profile. Furthermore, Iloprost increased the mineralization capacity of osteogenic induced mesenchymal stromal cells through both direct as well as indirect cues. In an in vivo approach, Iloprost, embedded in a biphasic fibrin scaffold, decreased the pro-inflammatory and simultaneously enhanced the anti-inflammatory phase thereby improving bone healing outcome. Overall, our presented data confirms a possible strategy to modulate the early inflammatory phase in aged individuals toward a physiological healing by a downregulation of an excessive pro-inflammation that otherwise would impair healing. Further confirmation in phase I/II trials, however, is needed to validate the concept in a broader clinical evaluation

    Mesenchymal stromal cell and bone marrow concentrate therapies for musculoskeletal indications: a concise review of current literature

    Get PDF
    The interest on applying mesenchymal stromal cells (MSCs) in orthopedic disorders has risen tremendously in the last years due to scientific successes in preclinical in vitro and animal model studies. In a wide range of diseases and injuries of the musculoskeletal system, MSCs are currently under evaluation, but so far have found access to clinical use only in few cases. The current assignment is to translate the acquired knowledge into clinical practice. Therefore, this review aims at presenting a synopsis of the up-to-date status of the use of MSCs and MSC related cell products in musculoskeletal indications. Clinical studies were included, whereas preclinical and animal study data not have been considered. Most studies published so far investigate the final outcome applying bone marrow derived MSCs. In fewer trials the use of adipose tissue derived MSCs and allogenic MSCs was investigated in different applications. Although the reported results are equivocal in the current literature, the vast majority of the studies shows a benefit of MSC based therapies depending on the cell sources and the indication in clinical use. In summary, the clinical use of MSCs in patients in orthopedic indications has been found to be safe. Standardized protocols and clear definitions of the mechanisms of action and the mode and timing of application as well as further coordinated research efforts will be necessary for finally adding MSC based therapies in standard operating procedures and guidelines for the clinicians treating orthopedic disorders
    corecore