7 research outputs found
An Efficient Prediction Model for Water Discharge in Schoharie Creek, NY
Flooding normally occurs during periods of excessive precipitation or thawing in the winter period (ice jam). Flooding is typically accompanied by an increase in river discharge. This paper presents a statistical model for the prediction and explanation of the water discharge time series using an example from the Schoharie Creek, New York (one of the principal tributaries of the Mohawk River). It is developed with a view to wider application in similar water basins. In this study a statistical methodology for the decomposition of the time series is used. The Kolmogorov-Zurbenko filter is used for the decomposition of the hydrological and climatic time series into the seasonal and the long and the short term component. We analyze the time series of the water discharge by using a summer and a winter model. The explanation of the water discharge has been improved up to 81%. The results show that as water discharge increases in the long term then the water table replenishes, and in the seasonal term it depletes. In the short term, the groundwater drops during the winter period, and it rises during the summer period. This methodology can be applied for the prediction of the water discharge at multiple sites
Time Series Regression for Forecasting Flood Events in Schenectady, New York
Floods typically occur due to ice jams in the winter or extended periods of precipitation in the spring and summer seasons. An increase in the rate of water discharge in the river coincides with a flood event. This research combines the time series decomposition and the time series regression model for the flood prediction in Mohawk River at Schenectady, New York. The time series decomposition has been applied to separate the different frequencies in hydrogeological and climatic data. The time series data have been decomposed into the long-term, seasonal-term, and short-term components using the Kolmogorov-Zurbenko filter. For the application of the time series regression model, we determine the lags of the hydrogeological and climatic variables that provide the maximum performance for the model. The lags applied in the predictor variables of the model have been used for the physical interpretation of the model to strengthen the relationship between the water discharge and the climatic and hydrogeological variables. The overall model accuracy has been increased up to 73%. The results show that using the lags of the variables in the time regression model, and the forecasting accuracy has been increased compared to the raw data by two times
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
Abstract Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic. © 2024, The Author(s).53 − 5400.1-007/