16 research outputs found

    Hearts and Minds: Mental Health Support for schools

    Get PDF
    Hearts and Minds is a collection of generic mental health case studies written by students at the University of Southern Queensland. The mental health concerns focus on those typically experienced within schools and include Anxiety, Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, Depression, Post-Traumatic Stress Disorder and Suicidal Ideation

    Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule

    No full text
    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates

    Resonance Raman and UV-Vis Spectroscopic Characterization of FADH• in the Complex of Photolyase with UV-Damaged DNA

    No full text
    Escherichia coli photolyase uses blue light to repair cyclobutane pyrimidine dimers which are formed upon irradiation of DNA with ultraviolet (UV) light. E. coli photolyase is a flavoenzyme which contains a flavin adenine dinucleotide (FAD) in its active site and a 5,10-methenyltetrahydrofolate (MTHF) as a light-harvesting pigment. In the isolated enzyme, the FAD cofactor is present as a stable neutral radical semiquinone (FADH•). In this paper, we investigate the interaction between photolyase and UV-damage DNA by using resonance Raman and UV-vis spectroscopy. Substrate binding results in intensity changes and frequency shifts of the FADH• vibrations and also induces electrochromic shifts of the FADH• electronic transitions because of the substrate electric dipole moment. The intensity changes in the resonance Raman spectra can be largely explained by changes in the Raman excitation profiles because of the electrochromic shift. The size of the electrochromic shift suggests that the substrate binding geometry is similar to that of oxidized FAD in reconstituted photolyase. The frequency changes are partially a manifestation of the vibrational Stark effect induced by the substrate electric dipole moment but also because of small perturbations of the hydrogen-bonding environment of FADH• upon substrate binding. Furthermore, differences in the resonance Raman spectra of MTHF-containing photolyase and of an MTHF-less mutant suggests that MTHF may play a structural role in stabilizing the active site of photolyase while comparison to other flavoproteins indicates that the FAD cofactor has a strong hydrogen-bonding protein environment. Finally, we show that the electrochromic shift can be used as a direct method to measure photolyase-substrate binding kinetics

    The Free Energy of Dissociation of Oligomeric Structure in Phycocyanin Is Not Linear with Denaturant

    No full text
    Using SEC HPLC and fluorescence anisotropy, absorption spectra were assigned to the specific oligomeric structures found with phycocyanin. The absorption spectra were used to quantify the population of each oligomeric form of the protein as a function of both urea concentration and temperature. Phycocyanin hexamers dissociate to trimers with equilibrium constants of 10 -6 to 10-5. Phycocyanin trimers dissociate to monomers with equilibrium constants of 10-15 to 10-12. Both dissociation constants increase linearly with increasing urea concentration, and ΔG° values calculated from the equilibrium constants fit best with an exponential function. Our findings appear in contrast with the commonly used linear extrapolation model, ΔGurea° = ΔG water° + A[denaturant], in which a linear relationship exists between the free energy of protein unfolding or loss of quaternary structure and the denaturant concentration. Our data examines a smaller range of denaturant concentration than generally used, which might partially explain the inconsistency

    Identification of inactive conformation‐selective interleukin‐2‐inducible T‐cell kinase (ITK) inhibitors based on second‐harmonic generation

    No full text
    Many clinically approved protein kinase inhibitors stabilize an inactive conformation of their kinase target. Such inhibitors are generally highly selective compared to active conformation inhibitors, and consequently, general methods to identify inhibitors that stabilize an inactive conformation are much sought after. Here, we have applied a high‐throughput, second‐harmonic generation (SHG)‐based conformational approach to identify small molecule stabilizers of the inactive conformation of interleukin‐2‐inducible T‐cell kinase (ITK). A single‐site cysteine mutant of the ITK kinase domain was created, labeled with an SHG‐active dye, and tethered to a supported lipid bilayer membrane. Fourteen tool compounds, including stabilizers of the inactive and active conformations as well as nonbinders, were first examined for their effect on the conformation of the labeled ITK protein in the SHG assay. As a result, inactive conformation inhibitors were clearly distinguished from active conformation inhibitors by the intensity of SHG signal. Utilizing the SHG assay developed with the tool compounds described above, we identified the mechanism of action of 22 highly selective, inactive conformation inhibitors within a group of 105 small molecule inhibitors previously identified in a high‐throughput biochemical screen. We describe here the first use of SHG for identifying and classifying inhibitors that stabilize an inactive vs. an active conformation of a protein kinase, without the need to determine costructures by X‐ray crystallography. Our results suggest broad applicability to other proteins, particularly with single‐site labels reporting on specific protein movements associated with selectivity
    corecore