27 research outputs found

    Not Only Soldiers Have Weapons: Evolution of the Frontal Gland in Imagoes of the Termite Families Rhinotermitidae and Serritermitidae

    Get PDF
    BACKGROUND: The frontal gland is a unique adaptation of advanced termite families. It has been intensively studied in soldiers with respect to its anatomy and chemistry, with numerous novel compounds being discovered within the tremendous richness of identified products. At the same time, the presence of the frontal gland in non-soldier castes received only negligible attention in the past. PRINCIPAL FINDINGS: Here, we report on the development of the frontal gland in alate imagoes of 10 genera and 13 species of Rhinotermitidae and Serritermitidae, in order to shed light on the evolution and function of this gland in imagoes. All investigated species possess a frontal gland. In most cases, it is well-developed and equipped with a sac-like reservoir, located in the postero-dorsal part of cranium, but reaching as far as the seventh abdominal segment in some Rhinotermitinae. The only exception is the genus Psammotermes, in which the gland is very small and devoid of the reservoir. CONCLUSIONS: Our direct observations and comparisons with soldiers suggest a defensive role of the gland in imagoes of all studied species. This functional analogy, along with the anatomic homology between the frontal gland in soldiers and imagoes, make it likely that the gland appeared once during the early evolution of rhinotermitid ancestors, and remained as a defensive organ of prime importance in both, soldiers and imagoes

    Ontogeny of dorsoabdominal scent gland complex in the representatives of the Pentatomoidea (Heteroptera).

    No full text
    Dorso-abdominal scent glands (= DAGs) of larvae represent one of apomorphic characters of insects order Heteroptera. These glands can persist until adults in different taxa. The persistence of DAGs were proved in the members of the family Acanthosomatidae. The ontogenetic development of DAGs cuticular structures were studied in all stadia, from 1st larval instar to adults of acanthosomatid Elasmucha ferrugata (Fabricius, 1787). The study concerned external structures and sculptures associated with DAG ostiole and areas of their surfaces, as well as internal structures, shape of gland reservoir and number of conducting ductules of proper glandular units. The light microscope and stereomicroscope and scanning electron microscope were used for this comprehensive study

    Ontogeny of dorsoabdominal scent gland complex in the representatives of the Pentatomoidea (Heteroptera).

    No full text
    Dorso-abdominal scent glands (= DAGs) of larvae represent one of apomorphic characters of insects order Heteroptera. These glands can persist until adults in different taxa. The persistence of DAGs were proved in the members of the family Acanthosomatidae. The ontogenetic development of DAGs cuticular structures were studied in all stadia, from 1st larval instar to adults of acanthosomatid Elasmucha ferrugata (Fabricius, 1787). The study concerned external structures and sculptures associated with DAG ostiole and areas of their surfaces, as well as internal structures, shape of gland reservoir and number of conducting ductules of proper glandular units. The light microscope and stereomicroscope and scanning electron microscope were used for this comprehensive study

    Age-dependent changes in ultrastructure of the defensive glands of Neocapritermes taracua workers (Isoptera, Termitidae).

    No full text
    Protection against predators and competitors is one of the main concerns of termite colonies, which developed a specialised defensive caste, the soldiers. However, soldiers are rare or even missing in several lineages of termites, while workers often develop new defence strategies especially in soil-feeding species. Here, we describe the morphology and ultrastructure of the autothysis-associated glands of Neocapritermes taracua workers and report their age-related changes in structure. The defensive glands of N. taracua workers consist of a pair of labial and a pair of crystal glands, whose secretions mix together through autothysis. Autothysis always occurs at the line of weakness connecting the anterior parts of the crystal-bearing pouches. The crystal glands consist of groups of bicellular secretory units (secretory and corresponding canal cells) which secrete the blue crystal material into external pouches. Their secretory activity is maximal in the middle of worker life, and is considerably lower in very young and old workers. The labial glands are composed of two types of secretory cells: the central and the parietal cells. While the central cells are developed similarly to other termites and secrete proteinaceous secretion into labial gland ducts, the parietal cells develop proteinaceous granules which may eventually bud off the cells. The secretory function of parietal cells is so far unique to N. taracua and differs from other termite species in which they are only responsible of water uptake by acini. The defensive device of N. taracua is truly exceptional as it involves a new gland and a previously undescribed function for parietal cells, being a remarkable example of evolution of morphological innovation. © 2014.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Chemistry and Anatomy of the Frontal Gland in Soldiers of the Sand Termite Psammotermes hybostoma

    No full text
    A great diversity of defensive chemicals has been described in termite soldiers equipped with a unique defensive organ, the frontal gland. Along with the functional diversity of these compounds, reflecting the evolutionary history of particular lineages and their defensive strategies, a considerable degree of chemical variability often occurs among species and populations. Thus, the chemistry of termite defense may provide information on the phylogeny and geographic dispersal of species and populations. In this paper, we report on the anatomy of the frontal gland and on the diversity of soldier defensive chemicals in the sand termite, Psammotermes hybostoma, from nine colonies and five different localities in Egypt. Using gas chromatography-mass spectrometry, a total of 30 sesquiterpene hydrocarbons, or their oxygenated derivatives, were detected, and the chemical identity of most of them identified. In addition, a ketone, an ester, and a diterpene were identified in some colonies. Within colonies, the chemical composition was stable and did not differ among soldier size categories. However, there were pronounced quantitative and qualitative differences in frontal gland chemicals among colonies and geographic locations. The findings are discussed in a broader comparison with other termite taxa. © 2012 Springer Science+Business Media, LLC.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    Get PDF
    Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone

    The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    Get PDF
    Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone

    Mutual use of trail-following chemical cues by a termite host and its inquiline

    Get PDF
    Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies
    corecore