13 research outputs found

    Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials

    No full text
    Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes

    Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines

    No full text
    International audienceThe purpose of this manuscript is to study the toxic responses against murine embryonic hippocampal cells (mHippoE-18) and neuroblastoma cells (N2a) to treatment with cationic phosphorus dendrimers (CPD). Two low generations of CPD—generation 2 (G2) and generation 3 (G3)—were applied to cell cultures to monitor events leading to either apoptosis or necrosis. These processes were analyzed using several bioassays, which included the detection of reactive oxygen species (ROS), mitochondrial membrane potential (Διm) alterations, morphology changes, apoptotic and dead cells, cytochrome c (Cyt c) release, caspase 3 activity, DNA fragmentation, as well as changes in cell cycle phases distribution. The results showed that CPD became highly cytotoxic at concentrations above 1 ÎŒM and at 0.7 ÎŒM in the case of G3 for mHippoE-18 cells. The toxicity was manifested by a pronounced decrease in cell viability, which is correlated with disturbances in cellular activities, such as massive ROS generation. The breakdown of cellular processes leads mainly to the necrotic cell death. Our findings are of high importance in the context of further biomedical studies on CPD

    Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure

    No full text
    International audienceThe aim of this study was to evaluate the nature and mechanisms of interaction between HIV peptide/dendrimer complexes (dendriplex) and artificial lipid membranes, such as large unilayered vesicles (LUV) and lipid monolayers in the air–water interface. Dendriplexes were combined as one of three HIV-derived peptides (Gp160, P24 and Nef) and one of two cationic phosphorus dendrimers (CPD-G3 and CPD-G4). LUVs were formed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) or of a mixture of DMPC and dipalmitoyl-phosphatidylglycerol (DPPG). Interactions between dendriplexes and vesicles were characterized by dynamic light scattering (DLS), fluorescence anisotropy, differential scanning calorimetry (DSC) and Langmuir–Blodgett methods. The morphology of formed systems was examined by transmission electron microscopy (TEM). The results suggest that dendriplexes interact with both hydrophobic and hydrophilic regions of lipid bilayers. The interactions between dendriplexes and negatively charged lipids (DMPC–DPPG) were stronger than those between dendriplexes and liposomes composed of zwitterionic lipids (DMPC). The former were primarily of electrostatic nature due to the positive charge of dendriplexes and the negative charge of the membrane, whereas the latter can be attributed to disturbances in the hydrophobic domain of the membrane. Obtained results provide new information about mechanisms of interaction between lipid membranes and nanocomplexes formed with HIV-derived peptides and phosphorus dendrimers. These data could be important for the choosing the appropriate antigen delivery vehicle in the new vaccines against HIV infection

    Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties

    No full text
    International audienceVarious dendritic structures have been prepared during the last few decades and their properties have been emphasized in a number of reviews. Among these macromolecular structures, those incorporating phosphorus units – phosphorus dendrimers – or viologen linkages – viologen dendrimers – stand as the most promising in different fields spanning from chemistry, materials science to biology and nanomedicine. The association of the two complementary phosphorus and viologen structures resulted in a nascent family of structures referred to as “mixed” hybrid phosphorus–viologen dendrimers. In light of their specific properties, it is of interest to illustrate the conceptual preparation of not only a variety of sophisticated hybrid viologen–phosphorus dendrimers including classical dendrimers, but also other kinds of mixed macromolecules such as macromolecular asterisks, onion peel structures and covalent polydendrimer frameworks. Some preliminary results concerning the biological properties of these nano-objects as well as their use for the construction of organic–inorganic hybrid materials are presented

    Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction

    No full text
    International audienceThis paper examines a perspective on the use of newly engineered nanomaterials as effective and safe carriers of genes for the therapy of cancer. Three different groups of cationic dendrimers (PAMAM, phosphorus and carbosilane) were complexed with anticancer siRNA and their biophysical properties of the dendriplexes analyzed. The potential of the dendrimers as nanocarriers for anticancer siBcl-xl, siBcl-2, siMcl-1 siRNAs and a siScrambled sequence was explored. Dendrimer/siRNA complexes were characterized by methods including fluorescence, zeta potential, dynamic light scattering, circular dichroism, gel electrophoresis and transmission electron microscopy. Some of the experiments were done with heparin to check if siRNA can be easily disassociated from the complexes, and whether released siRNA maintains its structure after interaction with the dendrimer. The results indicate that siRNAs form complexes with all the dendrimers tested. Oligoribonucleotide duplexes can be released from dendriplexes after heparin treatment and the structure of siRNA is maintained in the case of PAMAM or carbosilane dendrimers. The dendrimers were also effective in protecting siRNA from RNase A activity. The selection of the best siRNA carrier will be made based on cell culture studies (Part B)
    corecore