24 research outputs found

    Lipophilicity determination of quaternary (Fluoro)quinolones by chromatographic and theoretical approaches

    Get PDF
    Lipophilicity is a vital physicochemical parameter of a molecule, which affects several biological processes such as absorption, tissue distribution, and pharmacokinetic properties. In this study, evaluation of lipophilicities of a series of novel fluoroquinolone-Safirinium dye hybrids using chromatographic and computational methods is presented. Fluoroquinolone-Safirinium dye hybrids have been synthesized as new dual-acting hydrophilic antibacterial agents. Reversed phase thin-layer chromatography and micellar electrokinetic chromatography experiments were carried out. Furthermore, logP values of the target structures were predicted by means of different software platforms and algorithms. In order to assess similarities and dissimilarities of the obtained lipophilicity indexes, cluster analysis and sum of ranking differences were performed. The significant differences of calculated logP values (α = 0.05, p < 0.001) indicated that an experimental approach is necessary for lipophilicity prediction of this class of antibiotics. Chromatographic data indicated that the newly synthesized hybrid (fluoro)quinolone-based quaternary ammonium derivatives show less lipophilic character than the parent (fluoro)quinolones. Additionally, the chromatographically obtained lipophilicity indexes were evaluated for possible application in quantitative retention–activity relationships. The established lipophilicity models have the potential to predict antimicrobial activities of a series of quaternary (fluoro)quinolones against Bacillus subtilis, Escherichia coli, and Proteus vulgaris.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3741

    Lipophilicity determination of antifungal isoxazolo[3,4-b]pyridin-3(1h)-ones and their n1-substituted derivatives with chromatographic and computational methods

    Get PDF
    The lipophilicity of a molecule is a well-recognized as a crucial physicochemical factor that conditions the biological activity of a drug candidate. This study was aimed to evaluate the lipophilicity of isoxazolo[3,4-b]pyridine-3(1H)-ones and their N1-substituted derivatives, which demonstrated pronounced antifungal activities. Several methods, including reversed-phase thin layer chromatography (RP-TLC), reversed phase high-performance liquid chromatography (RP-HPLC), and micellar electrokinetic chromatography (MEKC), were employed. Furthermore, the calculated logP values were estimated using various freely and commercially available software packages and online platforms, as well as density functional theory computations (DFT). Similarities and dissimilarities between the determined lipophilicity indices were assessed using several chemometric approaches. Principal component analysis (PCA) indicated that other features beside lipophilicity affect antifungal activities of the investigated derivatives. Quantitative-structure-retention-relationship (QSRR) analysis by means of genetic algorithm - partial least squares (GA-PLS) - was implemented to rationalize the link between the physicochemical descriptors and lipophilicity. Among the studied compounds, structure 16 should be considered as the best starting structure for further studies, since it demonstrated the lowest lipophilic character within the series while retaining biological activity. Sum of ranking differences (SRD) analysis indicated that the chromatographic approach, regardless of the technique employed, should be considered as the best approach for lipophilicity assessment of isoxazolones

    Toward personalization of asthma treatment according to trigger factors

    Get PDF
    Asthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. Although in the past few drugs for the treatment of asthma were available, new treatment options are currently emerging, which appear to be highly effective in certain subgroups of patients. Accordingly, there is a need for biomarkers that allow selection of patients for refined and personalized treatment strategies. Recently, serological chip tests based on microarrayed allergen molecules and peptides derived from the most common rhinovirus strains have been developed, which may discriminate 2 of the most common forms of asthma, that is, allergen- and virus-triggered asthma. In this perspective, we argue that classification of patients with asthma according to these common trigger factors may open new possibilities for personalized management of asthma.Fil: Niespodziana, Katarzyna. Vienna University of Technology; AustriaFil: Borochova, Kristina. Vienna University of Technology; AustriaFil: Pazderova, Petra. Vienna University of Technology; AustriaFil: Schlederer, Thomas. Vienna University of Technology; AustriaFil: Astafyeva, Natalia. Saratov State Medical University; RusiaFil: Baranovskaya, Tatiana. Belarusian Medical Academy of Post Diploma Studies; BielorrusiaFil: Barbouche, Mohamed Ridha. Institut Pasteur de Tunis; TúnezFil: Beltyukov, Evgeny. Ural State Medical University; RusiaFil: Berger, Angelika. Vienna University of Technology; AustriaFil: Borzova, Elena. Russian Medical Academy of Continuous Professional Education; RusiaFil: Bousquet, Jean. MACVIA; Francia. Humboldt-Universität zu Berlin; AlemaniaFil: Bumbacea, Roxana S.. University of Medicine and Pharmacy "Carol Davila"; RumaniaFil: Bychkovskaya, Snezhana. Krasnoyarsk Medical University; RusiaFil: Caraballo, Luis. Universidad de Cartagena; ColombiaFil: Chung, Kian Fan. Imperial College London; Reino Unido. MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Reino UnidoFil: Custovic, Adnan. Imperial College London; Reino Unido. MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Reino UnidoFil: Docena, Guillermo H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Eiwegger, Thomas. University Of Toronto. Hospital For Sick Children; CanadáFil: Evsegneeva, Irina. Sechenov First Moscow State Medical University; RusiaFil: Emelyanov, Alexander. North-Western Medical University; RusiaFil: Errhalt, Peter. University Hospital Krems and Karl Landsteiner University of Health Sciences; AustriaFil: Fassakhov, Rustem. Kazan Federal University; RusiaFil: Fayzullina, Rezeda. Bashkir State Medical University; RusiaFil: Fedenko, Elena. NRC Institute of Immunology FMBA of Russia; RusiaFil: Fomina, Daria. Sechenov First Moscow State Medical University; RusiaFil: Gao, Zhongshan. Zhejiang University; ChinaFil: Giavina Bianchi, Pedro. Universidade de Sao Paulo; BrasilFil: Gotua, Maia. David Tvildiani Medical University; GeorgiaFil: Greber Platzer, Susanne. Vienna University of Technology; AustriaFil: Hedlin, Gunilla. Karolinska Huddinge Hospital. Karolinska Institutet; Sueci

    Use of Materials Based on Polymeric Silica as Bone-Targeted Drug Delivery Systems for Metronidazole

    No full text
    Mesostructured ordered silica-based materials are the promising candidates for local drug delivery systems in bone disease due to their uniform pore size and distribution, and high surface area which affect their excellent adsorption properties, good biocompatibility and bioactivity, and versatile functionalization so that their properties can be controlled. Ordered mesoporous silica (MCM-41 type) was synthesized by a surfactant-assisted sol-gel process using tetraethoxysilane as a silica precursor and hexadecyltrimethylammonium bromide as the structure-directing agent. Functionalized silica materials containing various types of organic groups (3-aminopropyl, 3-mercaptopropyl, or 3-glycidyloxypropyl groups) were synthesized by the post-grafting method onto pre-made mesoporous silica. Comparative studies of their structural characteristics, the surface mineralization activity and release properties for the model drug Metronidazole (MT) were then conducted. It has been found that porosity parameters, mineralization activity and adsorption/release of metronidazole from mesoporous channels of silica can be regulated using functional groups which are chemically bounded with an outer silica surface. The preferential mineral nucleation was found on negatively charged surfaces&mdash;MCM-41, and mercaptopropyl and glycidyloxypropyl functionalized silica (MCM-SH and MCM-epoxy, respectively) in simulated body fluid (SBF solution), as well as a sustained release of MT. In contrast to them, aminopropyl-functionalized samples (MCM-NH2) achieved a high MT release rate. These results confirm the potential of silica-based materials for local therapeutic applications (as drug carriers and bone substitutes) in bone disease

    Antibacterial Activities of Lipopeptide (C10)2-KKKK-NH2 Applied Alone and in Combination with Lens Liquids to Fight Biofilms Formed on Polystyrene Surfaces and Contact Lenses

    No full text
    The widespread use of biomaterials such as contact lenses is associated with the development of biofilm-related infections which are very difficult to manage with standard therapies. The formation of bacterial biofilms on the surface of biomaterials is associated with increased antibiotic resistance. Owing to their promising antimicrobial potential, lipopeptides are being intensively investigated as novel antimicrobials. However, due to the relatively high toxicity exhibited by numerous compounds, a lot of attention is being paid to designing new lipopeptides with optimal biological activities. The principal aim of this study was to evaluate the potential ophthalmic application of lipopeptide (C10)2-KKKK-NH2. This lipopeptide was synthesized according to Fmoc chemistry using the solid-phase method. The antibiofilm activities of the lipopeptide, antibiotics used in ocular infections, and commercially available lens liquids were determined using the broth dilution method on polystyrene 96-well plates and contact lenses. Resazurin was applied as the cell-viability reagent. The effectiveness of the commercially available lens liquids supplemented with the lipopeptide was evaluated using the same method and materials. (C10)2-KKKK-NH2 exhibited stronger anti-biofilm properties compared to those of the tested conventional antimicrobials and showed the ability to enhance the activity of lens liquids at relatively low concentrations (4&ndash;32 mg/L). Estimation of the eye irritation potential of the lipopeptide using Toxtree software 2.6.13 suggests that the compound could be safely applied on the human eye. The results of performed experiments encourage further studies on (C10)2-KKKK-NH2 and its potential application in the prophylaxis of contact lens-related eye infections

    ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.

    No full text
    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript
    corecore