Supplementary data for the article:

Ciura, K.; Fedorowicz, J.; Andrić, F.; Greber, K. E.; Gurgielewicz, A.; Sawicki, W.; Saczewski, J. Lipophilicity Determination of Quaternary (Fluoro)Quinolones by Chromatographic and Theoretical Approaches. *International Journal of Molecular Sciences* **2019**, *20* (21). <u>https://doi.org/10.3390/ijms20215288</u>

Compound number	Chemical name	Chemical structure
16	4-cyclopropyl-7-fluoro-6-((4a <i>S</i> ,7a <i>S</i>)-hexahydro-1 <i>H</i> - pyrrolo[3,4- <i>b</i>]pyridin-6(2 <i>H</i>)-yl)-5-methoxy-1-oxo-1,4- dihydronaphthalene-2-carboxylic acid (moxifloxacin)	
17	1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo- 1,4-dihydroquinoline-3-carboxylic acid (lomefloxacin)	
18	1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4- dihydroquinoline-3-carboxylic acid (norfloxacin)	
19	8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydropyrido[2,3- <i>d</i>]pyrimidine-6-carboxylic acid (pipemidic acid)	
20	5-amino-1-cyclopropyl-7-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylpiperazin- 1-yl)-6,8-difluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (sparfloxacin)	
21	1-cyclopropyl-6-fluoro-8-methoxy-7-(3-methylpiperazin- 1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (gatifloxacin)	

Compound number	Chemical name	Chemical structure
22	1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4- dihydroquinoline-3-carboxylic acid (ciprofloxacin)	
23	1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro- 1,8-naphthyridine-3-carboxylic acid (enoxacin)	

 Table S2. Retention parameters RM obtained in RP-TLC systems

	stationary phase: silica gel C ₈ mobile phase: methanol-water																						
Percentage of the organics	1e Compound number																						
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
30%	1.40	1.59	1.89	1.28	1.41	1.18	1.41	1.28	1.18	0.95	1.17	1.17	1.27	1.59	1.89	1.59	1.59	1.90	1.59	1.59	1.89	1.59	1.89
40%	1.26	1.26	1.39	1.00	1.16	1.08	1.16	1.07	0.94	0.78	1.00	1.00	1.00	1.16	1.39	1.26	1.39	1.57	1.32	1.39	1.39	1.56	1.57
50%	0.99	0.92	1.07	0.76	0.87	1.03	0.92	0.86	0.71	0.63	0.80	0.75	0.80	0.91	1.13	1.37	1.37	1.55	1.37	1.37	1.37	1.55	1.56
60%	0.83	0.73	0.83	0.62	0.79	0.97	0.91	0.80	0.59	0.59	0.66	0.62	0.62	0.65	0.79	1.04	1.13	1.24	1.13	0.97	0.97	1.24	1.13
70%	0.66	0.55	0.59	0.52	0.68	0.95	0.82	0.63	0.52	0.59	0.59	0.55	0.48	0.51	0.76	0.95	0.95	1.11	1.11	0.73	0.68	1.11	1.11
									station	ary ph	ase: sil	ica gel	C ₁₈										
									mobile	e phase	: meth	anol-w	ater										
Percentage of the organics											Cor	npound	l numbe	r									
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
40%	1.37	1.56	1.56	1.05	1.37	1.24	1.24	1.13	1.13	0.85	1.13	1.04	1.24	1.36	1.85	1.54	1.54	1.85	1.52	1.53	1.53	1.84	1.83
50%	0.94	1.01	1.10	0.76	1.01	1.01	1.11	1.02	0.88	0.77	0.88	0.88	0.88	0.95	1.53	1.52	1.20	1.34	1.35	1.51	1.51	1.82	1.81
60%	0.78	0.68	0.83	0.60	0.73	0.89	0.83	0.78	0.68	0.60	0.73	0.68	0.68	0.73	0.95	1.21	1.21	1.34	1.06	1.34	1.34	1.52	1.52
70%	0.74	0.56	0.60	0.49	0.65	0.79	0.79	0.65	0.56	0.56	0.65	0.52	0.48	0.49	0.64	0.91	0.91	1.07	1.02	0.72	0.84	1.30	1.30

	Stationary phase: C₅ modified silica Mobile phase consisted of methanol and water											
Compound number	$R_{ m M^0}$	σ <i>R</i> м ⁰	b	σb	R	<i>R</i> ²	F	S	р			
1	1.987	0.058	-1.915	0.112	0.995	0.990	294.865	0.035	0.000			
2	2.313	0.114	-2.606	0.220	0.989	0.979	140.297	0.070	0.001			
3	2.740	0.162	-3.173	0.311	0.986	0.972	103.906	0.098	0.002			
4	1.786	0.115	-1.900	0.221	0.980	0.961	74.044	0.070	0.003			
5	1.897	0.133	-1.831	0.256	0.972	0.945	51.140	0.081	0.006			
6	1.322	0.037	-0.562	0.072	0.977	0.954	61.603	0.023	0.004			
7	1.759	0.153	-1.425	0.294	0.942	0.887	23.577	0.093	0.017			
8	1.710	0.082	-1.563	0.158	0.985	0.970	97.650	0.050	0.002			
9	1.617	0.114	-1.660	0.219	0.975	0.950	57.513	0.069	0.005			
10	1.165	0.119	-0.911	0.230	0.916	0.839	15.690	0.073	0.029			
11	1.592	0.077	-1.495	0.149	0.986	0.971	101.351	0.047	0.002			
12	1.631	0.095	-1.627	0.184	0.981	0.963	78.499	0.058	0.003			
13	1.821	0.073	-1.974	0.141	0.992	0.985	196.583	0.045	0.001			
14	2.291	0.149	-2.656	0.288	0.983	0.966	85.341	0.091	0.003			
15	2.631	0.233	-2.879	0.448	0.966	0.932	41.319	0.142	0.008			
16	1.990	0.185	-1.494	0.356	0.924	0.854	17.578	0.113	0.025			
17	2.056	0.093	-1.539	0.179	0.980	0.961	73.912	0.057	0.003			
18	2.427	0.129	-1.905	0.248	0.976	0.952	59.043	0.078	0.005			
19	1.870	0.137	-1.132	0.263	0.928	0.861	18.523	0.083	0.023			
20	2.275	0.170	-2.130	0.326	0.967	0.934	42.589	0.103	0.007			
21	2.679	0.187	-2.833	0.360	0.977	0.954	61.957	0.114	0.004			
22	2.044	0.165	-1.268	0.318	0.917	0.841	15.894	0.101	0.028			
23	2.452	0.181	-1.997	0.348	0.957	0.916	32.848	0.110	0.011			
	Stationary phase: C ₁₈ modified silica Mobile phase consisted of methanol and water											
Compound number	$R_{ m M^0}$	σR_{M^0}	b	σb	R	R^2	F	S	р			

Table S3. Statistical parameters of fitted Soczewiński-Wachtmeister's equation for each of the studied compounds.

1	1.65	0.148	-1.36	0.263	0.965	0.930	26.731	0.059	0.035
2	2.78	0.372	-3.31	0.663	0.962	0.926	25.000	0.148	0.038
3	2.75	0.210	-3.13	0.373	0.986	0.972	70.354	0.083	0.014
4	1.74	0.153	-1.85	0.272	0.979	0.958	46.088	0.061	0.021
5	2.29	0.245	-2.45	0.436	0.970	0.941	31.673	0.097	0.030
6	1.78	0.116	-1.45	0.207	0.980	0.961	49.407	0.046	0.020
7	1.87	0.174	-1.60	0.309	0.965	0.931	26.913	0.069	0.035
8	1.83	0.097	-1.71	0.173	0.990	0.980	97.178	0.039	0.010
9	1.86	0.120	-1.91	0.215	0.988	0.975	79.035	0.048	0.012
10	1.27	0.093	-1.04	0.166	0.976	0.952	39.501	0.037	0.024
11	1.72	0.150	-1.59	0.267	0.973	0.947	35.524	0.060	0.027
12	1.75	0.030	-1.75	0.053	0.999	0.998	1075.218	0.012	0.001
13	2.18	0.156	-2.47	0.278	0.988	0.975	78.933	0.062	0.012
14	2.45	0.176	-2.84	0.313	0.988	0.976	82.731	0.070	0.012
15	3.56	0.198	-4.21	0.352	0.993	0.986	143.007	0.079	0.007
16	2.62	0.188	-2.43	0.305	0.977	0.955	63.425	0.096	0.004
17	2.33	0.173	-2.03	0.280	0.973	0.946	52.350	0.089	0.005
18	2.54	0.257	-2.06	0.417	0.944	0.891	24.410	0.132	0.016
19	2.39	0.212	-1.78	0.321	0.969	0.939	30.550	0.072	0.031
20	2.85	0.360	-2.88	0.584	0.943	0.890	24.303	0.185	0.016
21	2.69	0.297	-2.55	0.481	0.950	0.903	28.053	0.152	0.013
22	2.79	0.168	-2.15	0.272	0.977	0.954	62.637	0.086	0.004
23	2.70	0.146	-1.98	0.236	0.979	0.959	69.995	0.075	0.004

 Table S4. Correlation matrix of TLC chromatographic parameters.

	$R_{\rm M}^0 { m C}_{18}$	<i>b</i> C ₁₈	C ₀ C ₁₈	т <i>R</i> м С ₁₈	PC1 C ₁₈	$R_{\rm M}^0$ C ₈	<i>b</i> C ₈	<i>C</i> ₀ C ₈	т <i>R</i> м С8	PC1 C8
$R_{M}^{0} C_{18}$	1.00	0.87	0.23	0.70	0.69	0.85	0.62	0.16	0.69	0.74
<i>m</i> C ₁₈	0.87	1.00	0.67	0.26	0.24	0.76	0.80	0.45	0.27	0.35
$C_0 C_{18}$	0.23	0.67	1.00	0.49	0.50	0.26	0.66	0.69	0.46	0.38
$mR_M C_{18}$	0.70	0.26	0.49	1.00	1.00	0.59	0.10	0.30	0.96	0.95
$PC_1 C_{18}$	0.69	0.24	0.50	1.00	1.00	0.58	0.08	0.31	0.96	0.95
$R_M^0 C_8$	0.85	0.76	0.26	0.59	0.58	1.00	0.85	0.42	0.65	0.73
$m C_8$	0.62	0.80	0.66	0.10	0.08	0.85	1.00	0.75	0.15	0.26
$C_0 C_8$	0.16	0.45	0.69	0.30	0.31	0.42	0.75	1.00	0.31	0.21
mR_MC_8	0.69	0.27	0.46	0.96	0.96	0.65	0.15	0.31	1.00	0.99

$PC_1 C_8$	0.74	0.35	0.38	0.95	0.95	0.73	0.26	0.21	0.99	1.00

Figure S1. Ranking of computational methods for lipophilicity estimation. (**a**) sum of ranking differencescomparison of ranks by random numbers (SRD-CRRN) of interval scaled log*P* values; the SRD values are depicted on x and y-axis; (**b**) box and whisker plot of normalized SRD values obtained by the sevenfold cross-validation. Statistically significantly different methods (p = 0.05, tested by both the sign test and the Wilcoxon's matched pairs test) are separated by dashed lines.

а

Figure S2. Ranking of chromatographic lipophilicity indexes. (a) SRD-CRRN of interval scaled chromatographic descriptors; the SRD values are depicted on x and y-axis; (b) box and whisker plot of normalized SRD values obtained by the sevenfold cross-validation. Statistically significantly different methods (p = 0.05, tested by both the sign test and the Wilcoxon's matched pairs test) are separated by dashed lines.

Figure S3. Ranking of computational methods for lipophilicity estimation. (a) SRD-CRRN of rank transformed logP values; the SRD values are depicted on x and y-axis; (b) box and whisker plot of normalized SRD values obtained by the sevenfold cross-validation. Statistically significantly different methods (p = 0.05, tested by both the sign test and the Wilcoxon's matched pairs test) are separated by dashed lines.

а

Figure S4. Ranking of chromatographic lipophilicity indexes. (a) SRD-CRRN of rank transformed chromatographic descriptors; the SRD values are depicted on x and y axes; (b) box and whisker plot of normalized SRD values obtained by the sevenfold cross-validation. Statistically significantly different methods (p = 0.05, tested by both the sign test and the Wilcoxon's matched pairs test) are separated by dashed lines.