57 research outputs found

    The Role of Governmental Credit in Hemispheric Trade

    Get PDF
    Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na(+) current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na(+)-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca(2+)-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na(+) concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na(+) with either K(+) or Choline(+). Prevention of this influx of Na(+) also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na(+) increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na(+) channel is up-regulated during apoptosis and that influx of Na(+) is a crucial step in the apoptotic process in Xenopus oocytes

    Distinct Lysosomal Network Protein Profiles in Parkinsonian Syndrome Cerebrospinal Fluid.

    Get PDF
    BackgroundClinical diagnosis of parkinsonian syndromes like Parkinson's disease (PD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) is hampered by overlapping symptomatology and lack of diagnostic biomarkers, and definitive diagnosis is only possible post-mortem.ObjectiveSince impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that profiles of select lysosomal network proteins in cerebrospinal fluid could be differentially expressed in these parkinsonian syndromes.MethodsCerebrospinal fluid samples were collected from PD patients (n = 18), clinically diagnosed 4-repeat tauopathy patients; corticobasal syndrome (CBS) (n = 3) and PSP (n = 8); and pathologically diagnosed PSP (n = 8) and CBD patients (n = 7). Each patient set was compared to its appropriate control group consisting of age and gender matched individuals. Select lysosomal network protein levels were detected via Western blotting. Factor analysis was used to test the diagnostic sensitivity, specificity and accuracy of the select lysosomal network protein expression profiles.ResultsPD, CBD and PSP were markedly different in their cerebrospinal fluid lysosomal network protein profiles. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in PD; early endosomal antigen 1 was decreased and lysozyme increased in PSP; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in CBD. A panel of lysosomal-associated membrane protein 2, lysozyme and microtubule-associated protein 1 light chain discriminated between controls, PD and 4-repeat tauopathies.ConclusionsThis study offers proof of concept that select lysosomal network proteins are differentially expressed in cerebrospinal fluid of Parkinson's disease, corticobasal syndrome and progressive supranuclear palsy. Lysosomal network protein analysis could be further developed as a diagnostic fluid biomarker in parkinsonian syndromes

    Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimer's disease.

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people and currently lacking available disease-modifying treatments. Appropriate disease models are necessary to investigate disease mechanisms and potential treatments. Drosophila melanogaster models of AD include the Aβ fly model and the AβPP-BACE1 fly model. In the Aβ fly model, the Aβ peptide is fused to a secretion sequence and directly overexpressed. In the AβPP-BACE1 model, human AβPP and human BACE1 are expressed in the fly, resulting in in vivo production of Aβ peptides and other AβPP cleavage products. Although these two models have been used for almost two decades, the underlying mechanisms resulting in neurodegeneration are not yet clearly understood. In this study, we have characterized toxic mechanisms in these two AD fly models. We detected neuronal cell death and increased protein carbonylation (indicative of oxidative stress) in both AD fly models. In the Aβ fly model, this correlates with high Aβ1-42 levels and down-regulation of the levels of mRNA encoding lysosomal-associated membrane protein 1, lamp1 (a lysosomal marker), while in the AβPP-BACE1 fly model, neuronal cell death correlates with low Aβ1-42 levels, up-regulation of lamp1 mRNA levels and increased levels of C-terminal fragments. In addition, a significant amount of AβPP/Aβ antibody (4G8)-positive species, located close to the endosomal marker rab5, was detected in the AβPP-BACE1 model. Taken together, this study highlights the similarities and differences in the toxic mechanisms which result in neuronal death in two different AD fly models. Such information is important to consider when utilizing these models to study AD pathogenesis or screening for potential treatments

    Regulation of apoptosis-associated lysosomal membrane permeabilization

    Get PDF
    Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.The original publication is available at www.springerlink.com: Ann-Charlotte Johansson, Hanna Appelqvist, Cathrine Nilsson, Katarina Kågedal, Karin Roberg and Karin Öllinger, Regulation of apoptosis-associated lysosomal membrane permeabilization, 2010, APOPTOSIS, (15), 5, 527-540. http://dx.doi.org/10.1007/s10495-009-0452-5 Copyright: Springer Science Business Media http://www.springerlink.com/</p

    Alpha-synuclein biology in Lewy body diseases.

    No full text
    α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called α-synucleinopathies, which are characterized by the presence of aggregated α-synuclein intracellularly. Primary α-synucleinopathies include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy, with α-synuclein also found secondarily in a number of other diseases, including Alzheimer's disease. Understanding how α-synuclein aggregates form in these different disorders is important for the understanding of its pathogenesis in Lewy body diseases. PD is the most prevalent of the α-synucleinopathies and much of the initial research on α-synuclein Lewy body pathology was based on PD but is also relevant to Lewy bodies in other diseases (dementia with Lewy bodies and Alzheimer's disease). Polymorphism and mutation studies of SNCA, the gene that encodes α-synuclein, provide much evidence for a causal link between α-synuclein and PD. Among the primary α-synucleinopathies, multiple system atrophy is unique in that α-synuclein deposition occurs in oligodendrocytes rather than neurons. It is unclear whether α-synuclein originates from oligodendrocytes or whether it is transmitted somehow from neurons. α-Synuclein exists as a natively unfolded monomer in the cytosol, but in the presence of lipid membranes it is thought to undergo a conformational change to a folded α-helical secondary structure that is prone to forming dimers and oligomers. Posttranslational modification of α-synuclein, such as phosphorylation, ubiquitination and nitration, has been widely implicated in α-synuclein aggregation process and neurotoxicity. Recent studies using animal and cell models, as well as autopsy studies of patients with neuron transplants, provided compelling evidence for prion-like propagation of α-synuclein. This observation has implications for therapeutic strategies, and much recent effort is focused on developing antibodies that target extracellular α-synuclein

    *To whom correspondence should be addressed.

    No full text
    An in vitro model for neuroscience- differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons Running title: A novel in vitro model for neuroscienc
    corecore