925 research outputs found
Unveiling Advanced Computational Applications in Quantum Computing: A Comprehensive Review
The field of advanced computing applications could experience a significant impact from quantum computing, which is a rapidly developing field with the potential to revolutionize numerous areas of science and technology. In this review, we explore into the various ways in which complex computational problems could be tackled by utilizing quantum computers, including machine learning, optimization, and simulation. One potential application of quantum computers is in machine learning, where they could be used to improve the accuracy and efficiency of algorithms. Complex optimization problems, such as those encountered in logistics and finance, can be addressed using quantum computers as well. Furthermore, the utilization of quantum computers could enable the simulation of intricate systems, such as molecules and materials, leading to significant applications in fields like Physics and Material Technology. Although quantum computers are currently in the early stages of development, they possess the potential to propel numerous areas of science and technology forward in a significant manner. Further research and development are needed to fully realize the potential of quantum computing in the field of advanced computing applications
The atmospheric circulation of a nine-hot Jupiter sample: probing circulation and chemistry over a wide phase space
This is the author accepted manuscript. The final version is available from the American Astronomical Society / IOP Publishing via the DOI in this record.We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the speci c system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model \grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough to be observed in transmission with high-resolution spectrographs, such as ESPRESSO on VLT, METIS on the E-ELT, or with MIRI and NIRSpec aboard JWST. We also compare theoretical emission spectra generated from our models to available Spitzer eclipse depths for each planet, and nd that the outputs from our solar-metallicity, cloud-free models generally provide a good match to many of the datasets, even without additional model tuning. Although these models are cloud-free, we can use their results to understand the chemistry and dynamics that drive cloud formation in their atmospheres.European Research Council under the European Unions Seventh Framework Program (FP7/2007-2013)NAS
VLT FORS2 comparative transmission spectroscopy: Detection of Na in the atmosphere of WASP-39b from the ground
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the
Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm.
The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm
on a V = 12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The
ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy,
supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great
potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we
obtained HST-quality light curves from the ground
PRIMA General Observer Science Book
PRIMA (The PRobe for-Infrared Mission for Astrophysics) is a concept for a
far-infrared (IR) observatory. PRIMA features a cryogenically cooled 1.8 m
diameter telescope and is designed to carry two science instruments enabling
ultra-high sensitivity imaging and spectroscopic studies in the 24 to 235
microns wavelength range. The resulting observatory is a powerful survey and
discovery machine, with mapping speeds better by 2 - 4 orders of magnitude with
respect to its far-IR predecessors. The bulk of the observing time on PRIMA
should be made available to the community through a General Observer (GO)
program offering 75% of the mission time over 5 years. In March 2023, the
international astronomy community was encouraged to prepare authored
contributions articulating scientific cases that are enabled by the telescope
massive sensitivity advance and broad spectral coverage, and that could be
performed within the context of GO program. This document, the PRIMA General
Observer Science Book, is the edited collection of the 76 received
contributions.Comment: A. Moullet, T. Kataria, D. Lis, S. Unwin, Y. Hasegawa, E. Mills, C.
Battersby, A. Roc, M. Meixner are the editors of the PRIMA General Observer
Science Book. The book compiles 76 authored contributions. 399 page
Radial velocity eclipse mapping of exoplanets
Planetary rotation rates and obliquities provide information regarding the
history of planet formation, but have not yet been measured for evolved
extrasolar planets. Here we investigate the theoretical and observational
perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse)
ingress and egress for transiting exoplanets. Near secondary eclipse, when the
planet passes behind the parent star, the star sequentially obscures light from
the approaching and receding parts of the rotating planetary surface. The
temporal block of light emerging from the approaching (blue-shifted) or
receding (red-shifted) parts of the planet causes a temporal distortion in the
planet's spectral line profiles resulting in an anomaly in the planet's radial
velocity curve. We demonstrate that the shape and the ratio of the
ingress-to-egress radial velocity amplitudes depends on the planetary
rotational rate, axial tilt and impact factor (i.e. sky-projected planet
spin-orbital alignment). In addition, line asymmetries originating from
different layers in the atmosphere of the planet could provide information
regarding zonal atmospheric winds and constraints on the hot spot shape for
giant irradiated exoplanets. The effect is expected to be most-pronounced at
near-infrared wavelengths, where the planet-to-star contrasts are large. We
create synthetic near-infrared, high-dispersion spectroscopic data and
demonstrate how the sky-projected spin axis orientation and equatorial velocity
of the planet can be estimated. We conclude that the RMse effect could be a
powerful method to measure exoplanet spins.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ on 2015
June 1
Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism
The ultraviolet–visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, time-series studies of exoplanets to characterize their atmospheres have relied on several combinations of modes on the Hubble Space Telescope's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200 to 800 nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for the characterization of exoplanet atmospheres. We obtain a broadband transit depth precision of 29–33 ppm and a precision of on average 200 ppm in 10 nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first-order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first Hubble Space Telescope orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results to be fully consistent with STIS measurements of HAT-P-41b from 310 to 800 nm, with the G280 results representing a more observationally efficient and precise spectrum. HAT-P-41b's transmission spectrum is best fit with a model with T eq = 2091 K, high metallicity, and significant scattering and cloud opacity. With these first-of-their-kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV–optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope
HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b
We present results from the first observations of the Hubble Space Telescope
(HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for
WASP-101b, a highly inflated hot Jupiter and one of the community targets
proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS)
program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that
the near-infrared transmission spectrum of WASP-101b contains no significant
HO absorption features and we rule out a clear atmosphere at 13{\sigma}.
Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at
observing strong molecular transmission features. We compare WASP-101b to the
well studied and nearly identical hot Jupiter WASP-31b. These twin planets show
similar temperature-pressure profiles and atmospheric features in the
near-infrared. We suggest exoplanets in the same parameter space as WASP-101b
and WASP-31b will also exhibit cloudy transmission spectral features. For
future HST exoplanet studies, our analysis also suggests that a lower count
limit needs to be exceeded per pixel on the detector in order to avoid unwanted
instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ
- …