127 research outputs found

    Условия формирования зон скопления метана в углепородном массиве

    Get PDF
    Розглянуті основні геологічні чинники, які впливають на формування зон скупчення метану у вуглепородному масиві. Виділені, найбільш ефективні показники для середнього катагенеза порід – опосередковані локальні структури, зони тріщинуватості порід, стрижневі ділянки пісковиків (палеопотоки). Для виділених показників виконаний розрахунок дисперсійного аналізу по альтернативній ознаці. На основі розрахунків встановлено вплив кожного фактора на формування зон скупчення метану у вуглепродному масиві.Basic geological factors, which influence on forming of zone of accumulation of methane in coalrock massif, are presented. The most effective indexes for middle katagenesis of rock are determinated - medial local structures, zone of jointing of rock, race areas of sandstones (paleocurrent). For determinated indexes calculation of dispersion on an alternative character is executed. On the basis of calculations influence of every factor on forming of zone of accumulation of methane in a coalrock massif is definited

    Методы и механизмы геттерирования кремниевых структур в производстве интегральных микросхем

    Get PDF
    Увеличение степени интеграции элементной базы предъявляет все более жесткие требования к уменьшению концентрации загрязняющих примесей и окислительных дефектов упаковки в исходных кремниевых пластинах с ее сохранением в технологическом цикле изготовления ИМС. Это обуславливает высокую актуальность применения геттерирования в современной технологии микроэлектроники. В статье рассмотрены существующие методы геттерирования кремниевых пластин и механизмы их протекания.Збільшення ступеня інтеграції елементної бази пред'являє все більш жорсткі вимоги до зменшення концентрації забруднюючих домішок та окислювальних дефектів упаковки у вихідних кремнієвих пластинах за її збереження у технологічному циклі виготовлення ІМС. Це обумовлює високу актуальність застосування гетерування в сучасній технології мікроелектроніки. Розглянуто існуючі методи гетерування кремнієвих пластин та розглянуто механізми їх перебігу.Increasing the degree of integration of hardware components imposes more stringent requirements for the reduction of the concentration of contaminants and oxidation stacking faults in the original silicon wafers with its preservation in the IC manufacturing process cycle. This causes high relevance of the application of gettering in modern microelectronic technology. The existing methods of silicon wafers gettering and the mechanisms of their occurrence are considered

    TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities.

    Get PDF
    The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain

    Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies

    Get PDF
    BACKGROUND: Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. METHODOLOGY/PRINCIPAL FINDINGS: Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations

    Revisiting the Twentieth Century Through the Lens of Generation X and Digital Games: A Scoping Review

    Get PDF
    Video games have been around since the 1960s and have impacted upon society in a myriad of different ways. The purpose of this scoping review is to identify existing literature within the domain of video games which recruited participants from the Generation X (1965–1980) cohort. Six databases were searched (ACM, CINHAL Google Scholar, PubMed, Scopus, and Web of Science) focusing on published journal papers between 1970 and 2000. Search results identified 3186 articles guided by the PRISMA Extension for Scoping Reviews (PRISMA-ScR); 4 papers were irretrievable, 138 duplicated papers were removed, leaving 3048 were assessed for eligibility and 3026 were excluded. Articles (n = 22) were included into this review, with four papers primarily published in 1997 and in 1999. Thematic analysis identified five primary themes: purpose and objectives, respective authors’ reporting, technology, ethics and environment) and seven secondary themes: populations, type of participants (e.g. children, students), ethical approval, study design, reimbursement, language, type of assessments. This scoping review is distinctive because it primarily focuses on Generation X, who have experienced and grown-up with videogames, and contributes to several disciplines including: game studies, gerontology and health, and has wider implications from a societal, design and development perspective of video games

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology

    Epilepsy Caused by an Abnormal Alternative Splicing with Dosage Effect of the SV2A Gene in a Chicken Model

    Get PDF
    Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans

    Rare coding variants in genes encoding GABA_A receptors in genetic generalised epilepsies: an exome-based case-control study

    Get PDF
    BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund)
    corecore