876 research outputs found

    Radiative Heat Transfer and Effective Transport Coefficients

    Get PDF
    The theory of heat transfer by electromagnetic radiation is based on the radiative transfer equation (RTE) for the radiation intensity, or equivalently on the Boltzmann transport equation (BTE) for the photon distribution. We focus in this review article, after a brief overview on different solution methods, on a recently introduced approach based on truncated moment expansion. Due to the linearity of the underlying BTE, the appropriate closure of the system of moment equations is entropy production rate minimization. This closure provides a distribution function and the associated effective transport coefficients, like mean absorption coefficients and the Eddington factor, for an arbitrary number of moments. The moment approach is finally illustrated with an application of the two-moment equations to an electrical arc

    Stability effects on results of diffusion tensor imaging analysis by reduction of the number of gradient directions due to motion artifacts: an application to presymptomatic Huntington's disease.

    Get PDF
    In diffusion tensor imaging (DTI), an improvement in the signal-to-noise ratio (SNR) of the fractional anisotropy (FA) maps can be obtained when the number of recorded gradient directions (GD) is increased. Vice versa, elimination of motion-corrupted or noisy GD leads to a more accurate characterization of the diffusion tensor. We previously suggest a slice-wise method for artifact detection in FA maps. This current study applies this approach to a cohort of 18 premanifest Huntington's disease (pHD) subjects and 23 controls. By 2-D voxelwise statistical comparison of original FA-maps and FA-maps with a reduced number of GD, the effect of eliminating GD that were affected by motion was demonstrated.We present an evaluation metric that allows to test if the computed FA-maps (with a reduced number of GD) still reflect a "true" FA-map, as defined by simulations in the control sample. Furthermore, we investigated if omitting data volumes affected by motion in the pHD cohort could lead to an increased SNR in the resulting FA-maps.A high agreement between original FA maps (with all GD) and corrected FA maps (i.e. without GD corrupted by motion) were observed even for numbers of eliminated GD up to 13. Even in one data set in which 46 GD had to be eliminated, the results showed a moderate agreement

    Thalamic Atrophy in Huntington's Disease Co-varies with Cognitive Performance: A Morphometric MRI Analysis

    Get PDF
    The pattern of motor, behavioral and cognitive symptoms in Huntington's disease (HD) implicates dysfunction of basal-ganglia-thalamo-cortical circuits. This study explored if cognitive performance in HD is correlated with localized cerebral changes. Psychomotor functions were investigated by verbal fluency, Stroop color word and Digit Symbol tests in 44 HD patients and 22 controls. Three-dimensional magnetic resonance imaging (MRI) data were analyzed with regard to regional gray matter changes by use of the observer-independent whole-brain-based approach of voxel-based morphometry (VBM). Using statistical parametric mapping, the MRI data of the HD patients were analyzed in an ANCOVA including the individual results of the neuropsychological tests. Besides striatal areas, symmetrical regional atrophy of the thalamus was found to co-vary significantly with cognitive performance (P < 0.001, corrected for multiple comparisons). In particular, thalamic subnuclei projecting to prefrontal areas (dorsomedial subnucleus) and connected to the striatum (centromedian/parafascicular and ventrolateral nuclear complex) displayed volume loss, in agreement with neuropathological studies. These results suggest that thalamic degeneration contributes in an important way to the impairment of executive function in early HD. Patients who are impaired in executive tests display structural double lesions of the basal-ganglia-thalamo-cortical circuitry both at the striatal and at the thalamic leve

    SPG10 is a rare cause of spastic paraplegia in European families

    Get PDF
    Background: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date.Objective: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype.Patients and methods: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families.Results: Three novel KIF5A mutations were detected in German families, including one missense mutation (c.759G>T, p.K253N), one in frame deletion (c.768_770delCAA, p.N256del) and one splice site mutation (c.217G>A). Onset of gait disturbance varied from infancy to 30 years of age. All patients presented clinically with pure HSP, but a subclinical sensory--motor neuropathy was detected by neurophysiology studies.Conclusions: SPG10 accounts for approximately 3% of European autosomal dominant HSP families. All mutations affect the motor domain of kinesin and thus most likely impair axonal transport. Clinically, SPG10 is characterised by spastic paraplegia with mostly subclinical peripheral neuropathy

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    Electronic shell effects and the stability of alkali nanowires

    Full text link
    Experimental conductance histograms for Na nanowires are analyzed in detail and compared to recent theoretical results on the stability of cylindrical and elliptical nanowires, using the free-electron model. We find a one-to-one correspondence between the peaks in the histograms and the most stable nanowire geometries, indicating that several of the commonly observed nanowires have elliptical cross sections
    corecore