12 research outputs found

    Production of Neutralinos as Adark Matter via Z0 Boson Propagator

    Get PDF
    The cross-section, in electron (e-) positron (e+) collision, are calculated over range of center of mass energy S  for the process.Please find more in the PDF version

    Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Get PDF
    AbstractIn order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N) ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode). On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed

    Synthesis, reactions and antimicrobial activity of benzothiazoles

    Get PDF
    Benzothiazoles have been proven to be potent antimicrobial agents. In this study, 3-(5,6-dimethoxy-2-oxo-1,3-benzothiazol-3(2H)-yl)propanohydrazide has been utilized as a scaffold for synthesis of pyrrole, indolylidene, pyrazoles, mercaptotriazole, oxadiazole, triazole and oxothiazolidine derivatives. Structures of the synthesized compounds were elucidated on the basis of elemental analyses and spectral data. All the synthesized compounds were screened for their antimicrobial activity

    Fabrication and Characterization of Effective Biochar Biosorbent Derived from Agricultural Waste to Remove Cationic Dyes from Wastewater

    Get PDF
    The main aim of this work is to treat sugarcane bagasse agricultural waste and prepare an efficient, promising, and eco-friendly adsorbent material. Biochar is an example of such a material, and it is an extremely versatile and eco-friendly biosorbent to treat wastewater. Crystal violet (CV)-dye and methylene blue (MB)-dye species are examples of serious organic pollutants. Herein, biochar was prepared firstly from sugarcane bagasse (SCB), and then a biochar biosorbent was synthesized through pyrolysis and surface activation with NaOH. SEM, TEM, FTIR, Raman, surface area, XRD, and EDX were used to characterize the investigated materials. The reuse of such waste materials is considered eco-friendly in nature. After that, the adsorption of MB and CV-species from synthetically prepared wastewater using treated biochar was investigated under various conditions. To demonstrate the study’s effectiveness, it was attempted to achieve optimum effectiveness at an optimum level by working with time, adsorbent dose, dye concentration, NaCl, pH, and temperature. The number of adsorbed dyes reduced as the dye concentrations increased and marginally decreased with NaCl but increased with the adsorbent dosage, pH, and temperature of the solution increased. Furthermore, it climbed for around 15 min before reaching equilibrium, indicating that all pores were almost full. Under the optimum condition, the removal perecentages of both MB and CV-dyes were ≥98%. The obtained equilibrium data was represented by Langmuir and Freundlich isotherm models. Additionally, the thermodynamic parameters were examined at various temperatures. The results illustrated that the Langmuir isotherm was utilized to explain the experimental adsorption processes with maximum adsorption capacities of MB and CV-dyes were 114.42 and 99.50 mgg−1_{−1}, respectively. The kinetic data were estimated by pseudo-first and pseudo-second-order equations. The best correlation coefficients of the investigated adsorption processes were described by the pseudo-second-order kinetic model. Finally, the data obtained were compared with some works published during the last four years

    Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling

    Get PDF
    The kinetics of MgO + + CH 4 was studied experimentally using the variable ion source, temperature adjustable selected ion flow tube (VISTA-SIFT) apparatus from 300 − 600 K and computationally by running and analyzing reactive atomistic simula- tions. Rate coefficients and product branching fractions were determined as a function of temperature. The reaction proceeded with a rate of k = 5 . 9 ± 1 . 5 × 10 − 10 ( T/ 300 K) − 0 . 5 ± 0 . 2 cm 3 s − 1 . MgOH + was the dominant product at all temperatures, but Mg + , the co-product of oxygen-atom transfer to form methanol, was observed with a product branching fraction of 0 . 08 ± 0 . 03( T/ 300 K) − 0 . 8 ± 0 . 7 . Reactive molecular dynamics simulations using a reactive force field, as well as a neural network trained on thousands of structures yield rate coefficients about one order of magnitude lower. This underestimation of the rates is traced back to the multireference character of the transition state [MgOCH 4 ] + . Statistical modeling of the temperature-dependent kinetics provides further insight into the reactive potential surface. The rate limiting step was found to be consistent with a four-centered activation of the C-H bond, consistent with previous calculations. The product branching was modeled as a competition between dissociation of an insertion intermediate directly after the rate- limiting transition state, and traversing a transition state corresponding to a methyl migration leading to a Mg-CH 3 OH + complex, though only if this transition state is stabilized significantly relative to the dissociated MgOH + + CH 3 product channel. An alternative non-statistical mechanism is discussed, whereby a post-transition state bifurcation in the potential surface could allow the reaction to proceed directly from the four-centered TS to the Mg-CH 3 OH + complex thereby allowing a more robust competition between the product channels

    Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.

    Get PDF
    BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs

    New 1,2,3-Triazole-Coumarin-Glycoside Hybrids and Their 1,2,4-Triazolyl Thioglycoside Analogs Targeting Mitochondria Apoptotic Pathway: Synthesis, Anticancer Activity and Docking Simulation

    No full text
    Toxicity and resistance to newly synthesized anticancer drugs represent a challenging phenomenon of intensified concern arising from variation in drug targets and consequently the prevalence of the latter concern requires further research. The current research reports the design, synthesis, and anticancer activity of new 1,2,3-triazole-coumarin-glycosyl hybrids and their 1,2,4-triazole thioglycosides as well as acyclic analogs. The cytotoxic activity of the synthesized products was studied against a panel of human cancer cell lines. Compounds 8, 10, 16 and 21 resulted in higher activities against different human cancer cells. The impact of the hybrid derivative 10 upon different apoptotic protein markers, including cytochrome c, Bcl-2, Bax, and caspase-7 along with its effect on the cell cycle was investigated. It revealed a mitochondria-apoptotic effect on MCF-7 cells and had the ability to upregulate pro-apoptotic Bax protein and downregulate anti-apoptotic Bcl-2 protein and thus implies the apoptotic fate of the cells. Furthermore, the inhibitory activities against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases for 8, 10 and 21 were studied to detect the mechanism of their high potency. The coumarin-triazole-glycosyl hybrids 8 and 10 illustrated excellent broad inhibitory activity (IC50= 0.22 ± 0.01, 0.93 ± 0.42 and 0.24 ± 0.20 μM, respectively, for compound 8), (IC50 = 0.12 ± 0.50, 0.79 ± 0.14 and 0.15± 0. 60 μM, respectively, for compound 10), in comparison with the reference drugs, erlotinib, sorafenib and roscovitine (IC50 = 0.18 ± 0.05, 1.58 ± 0.11 and 0.46 ± 0.30 μM, respectively). In addition, the docking study was simulated to afford better rationalization and put insight into the binding affinity between the promising derivatives and their targeted enzymes and that might be used as an optimum lead for further modification in the anticancer field

    Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens

    Get PDF
    Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles

    Nitrogen and phosphorus co-doped carbocatalyst for efficient organic pollutant removal through persulfate-based advanced oxidation processes

    No full text
    Carbocatalysts doped with heteroatoms such as nitrogen or sulphur have been reported to be useful in persulfate-based advanced oxidation processes for organic pollutant removal. However, there is limited research on the effect of doping with phosphorus atoms on degradation performance. In this work, a new nitrogen and phosphorus-doped carbocatalyst (N, P-HC) was designed using hydrothermal carbonization followed by pyrolysis at 700 °C, with olive pomace as a carbon source, to degrade organic pollutants in the presence of peroxydisulfate (PDS). Experimental results showed that N, P-HC, with its large specific surface area (871.73 m2.g−1), high content of N-pyridinic and N-pyrrolic groups, and the presence of P-O-C and O-P-C bonds, exhibited high degradation performance (98% degradation of Rhodamine B (RhB) in 40 min, with an apparent rate constant (kapp) of 0.055 min−1 and an excellent turnover frequency (TOF) of 0.275 min−1). Quenching study and EPR analysis revealed that singlet oxygen generation (1O2) and direct electron transfer were the main reaction pathways for the non-radical pathway in the degradation of RhB. The improved catalytic efficiency in the N, P-HC/PDS/RhB system can be attributed to the synergistic effect between N and P atoms in the graphitic structure of the carbocatalyst, its high surface area, and the presence of oxygenated functional groups on the surface of the N, P-HC. The used N, P-HC carbocatalyst can also be efficiently recovered by heat treatment at 500 °C. Overall, this study presents a simple and environmentally friendly method for synthesizing a high-performance N, P co-doped olive pomace-based carbocatalyst for water decontamination through PS-AOPs processes
    corecore