3 research outputs found

    A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics

    Get PDF
    Cost management and toxic waste generation are two key issues that must be addressed before the commercialization of perovskite optoelectronic devices. We report a groundbreaking strategy for eco-friendly and cost-effective fabrication of highly efficient perovskite solar cells. This strategy involves the usage of a high volatility co-solvent, which dilutes perovskite precursors to a lower concentration (<0.5 M) while retaining similar film quality and device performance as a high concentration (>1.4 M) solution. More than 70% of toxic waste and material cost can be reduced. Mechanistic insights reveal ultra-rapid evaporation of the co-solvent together with beneficial alteration of the precursor colloidal chemistry upon dilution with co-solvent, which in-situ studies and theoretical simulations confirm. The co-solvent tuned precursor colloidal properties also contribute to the enhancement of the stability of precursor solution, which extends its processing window thus minimizing the waste. This strategy is universally successful across different perovskite compositions, and scales from small devices to large-scale modules using industrial spin-coating, potentially easing the lab-to-fab translation of perovskite technologies

    Inverted perovskite solar cells with low-loss hole-selective contact on textured substrates

    No full text
    Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following > 1000 hours of maximum power point tracking under 1-sun illumination

    Low-loss contacts on textured substrates for inverted perovskite solar cells

    No full text
    <p>Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following > 1000 hours of maximum power point tracking under 1-sun illumination. </p&gt
    corecore