Abstract

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following > 1000 hours of maximum power point tracking under 1-sun illumination

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 08/10/2023