47 research outputs found

    Microbial degradation dynamics of farmed kelp deposits from Saccharina latissima and Alaria esculenta

    Get PDF
    Seaweed farming is a growing industry worldwide, and its sustainable management requires detailed knowledge about the environmental implications of detrital release. This study investigates benthic degradation of kelp detritus in defaunated mesocosms. The degradation dynamics were investigated over several weeks by resolving O2 and dissolved inorganic carbon (DIC) fluxes as a function of detritus amendments (0.15 g wet weight [WW] m-2 to 1 kg WW m-2), temperature (8 and 15°C), and presence of O2 for 2 commercially important kelp species: Saccharina latissima and Alaria esculenta. Kelp fragments were deposited in 2 different ways to simulate oxic and anoxic degradation: on the sediment surface (surface amendments) and just below the oxic surface sediment layer (subsurface amendments). All amendments resulted in high initial O2 consumption followed by an exponential decrease in O2 uptake over time. The degradation rates increased linearly with the amount of kelp added for both species and for both types of amendments. S. latissima expressed higher decay constants across all experiments and had a higher percentage turnover of carbon. In some instances, microbial priming apparently enabled enhanced degradation of pre-existing resilient sedimentary carbon. The absolute degradation rates of kelp were reduced in the absence of O2, and sulfate reduction resulted in gradual accumulation of iron sulfide. Lower ambient temperature reduced the benthic mineralization rate of both kelp species, particularly during the initial incubation stages. The current study demonstrates the importance of key variables for microbial kelp degradation in marine sediments and their dynamics—variables that should be carefully considered when assessing environmental implications of seaweed farming.publishedVersio

    Phytoplankton productivity in an Arctic fjord (West Greenland):Estimating electron requirements for carbon fixation and oxygen production

    No full text
    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (ΚC) and oxygen (O2) production (ΚO2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify ΚC and ΚO2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a ΚC of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)-1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a ΚC of 11.2 ± 1.3 mol é (mol C)-1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)-1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)-1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates

    Artificial oxygen fluxes measured by the eddy correlation method using stirring-sensitive oxygen microsensor and oxygen optodes in a flume experiment

    No full text
    In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume

    Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors.

    Get PDF
    In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m-2 d-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in futur
    corecore