5 research outputs found

    Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    Get PDF
    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements

    Excess science accommodation capabilities and excess performance capabilities assessment for Mars Geoscience and Climatology Orbiter: Extended study

    Get PDF
    The excess science accommodation and excess performance capabilities of a candidate spacecraft bus for the Mars Geoscience and Climatology Orbiter MGCO mission are assessed. The appendices are included to support the conclusions obtained during this contract extension. The appendices address the mission analysis, the attitude determination and control, the propulsion subsystem, and the spacecraft configuration

    Data for crystallisation, dissolution and saturation temperatures of the ternary system: Hexadecane and octadecane representative in fuel solvents

    Get PDF
    The data presented in this article relates to the crystallisation of hexadecane (C₁₆H₃₄) and octadecane (C₁₈H₃₈), being the predominant alkanes present in hydrotreated vegetable oil (HVO), from solvents representative of fuel (dodecane, toluene and kerosene). Data was collected for eleven C₁₆H₃₄/C₁₈H₃₈ compositions for each solvent used. Raw crystallisation and dissolution data is provided over a range of solution concentrations and cooling rates used under a poly-thermal crystallisation methodology. Equilibrium saturation temperature data is also presented for each composition, concentration and solvent system, indicating the trend in solubility for each solution

    Solubility and crystallisability of the ternary system: Hexadecane and octadecane representative in fuel solvents

    Get PDF
    The solubility and crystallisability of a range of binary mixtures of n-hexadecane (C16H34) and n-octadecane (C18H38), as the predominant alkanes present in hydrotreated vegetable oil (HVO), from three representative fuel solutions (dodecane, toluene and kerosene) is presented. The dissolution (saturation) and crystallisation (supersaturation) points of the solutions are measured using poly-thermal methods utilising turbidometric detection over four concentrations from (192 g/l to 400 g/l). The data reveals the existence of more soluble, less stable crystal structures that form from the alkane mixtures, when compared to the stable triclinic crystal structures formed from the single solute component solutions. An increased carbon chain length results in lower solubility for all three solvents and the solvent type is not found to have any significant effect on the solid forms produced from the mixtures. van’t Hoff analysis reveals the solvent type to influence the solute solubility with the closest to ideal behaviour being dodecane followed by kerosene and toluene, respectively. This finding is further supported by the calculated dissolution enthalpies and activity coefficients, which are the lowest in dodecane followed by kerosene and toluene. Larger values of activity coefficients are observed for compositions with molar fraction (y) = 0.1, 0.5–0.7 C18H38 which reflect the complex multi-phase formation in the solutions when compared with the more simple binary melt crystallisation system

    Isothermal by Design: An Accelerated Approach to the Prediction of the Crystallizability of Slowly Nucleating Systems

    Get PDF
    A route to the accelerated nucleation of α-para-aminobenzoic acid in ethanol/water (EtOH/H2O) mixed solvent solutions, using antisolvent crystallization, is presented. An isothermal by design approach is adopted, whereby the exothermic enthalpy of mixing associated with antisolvent addition is offset by the control of the temperature of the antisolvent added. Induction times (τ) are found to be reduced by 4 orders of magnitude using this methodology, consistent with the use of this approach as a nucleation acceleration technique. Calculation of the nucleation kinetic parameters for a range of solution concentrations, compositions, and supersaturations (S) reveal that effective interfacial tensions (γeff) vary from 8.4 to 2.3 mJ m–2 from solutions in H2O solvent and EtOH solvent, respectively, in line with the trend in solubility. The critical nucleus radius (r*) decreases from 1.98 to 0.40 nm associated with a decrease in the number of molecules in the critical nucleus (i*) from 196 to 2 molecules. A change in nucleation mechanism from heterogeneous nucleation to homogeneous nucleation is observed to take place at S ≈ 1.5. Limitations, particularly with focus toward larger-scale operation, are highlighted together with potential solutions to overcome such aspects
    corecore