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ABSTRACT

This report contains an assessment of the excess science accommodation
and excess performance capabilities of a candidate spacecraft bus for
the MGCO mission. 	 The appendices are included to support the conclu-
sions obtained during this contract extension. 	 The appendices address

r the mission analysis, the attitude determination and control,. the
r propulsion subsystem, and the spacecraft configuration.
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•	 I. INTRODUCTION

This contract extension to the basic Mars Orbiter study addresses the identi-

fication of "excess capability" beyond the mission/system requirements, "excess

capability" for science accommodation, and constraints on the accommodation of

science instruments.

As this study effort progressed it became apparent that "excess capability" can

be defined in a number of ways. It may be defined as (a) capability above the

absolute minimum required to meet the mission requirements, or (b) the capabil-

ity beyond the normal margins of performance included in an optimized space-

craft approach.

"Excess capability" in many cases cannot be defined solely by a numerical value

(ex; extra instrument mounting space on the nadir facing side of the space-

craft, or "excess" instrument weight or power capacity has no meaning if an

additional candidate instrument has cooler or viewing field-of-view (FOV) re-

quirements that would be incompatible with an existing configuration). Fur-

ther, "excess capability" may be available for only certain parts of a mission

(as in portions of a power profile) and its utility depends on the use to

which that "excess capability" can be put.

One of the TIROS series of spacecraft (TIROS-N) has been used as the baseline

for the extended study effort. It was selected since it can provide sufficient

bus performance for the Mars Orbiter mission. It does provide some excess

capability (above the normal margins used on spacecraft designs) in certain

subsystems. However, other spacecraft in the TIROS/DMSP series (ATN, SAATN,

DMSP Block 5D-3, etc.) can provide significantly more "excess capability" if

that is required for margin or growth (see Table 1).

The following factors have been kept in mind while performing that extended

study.

a. Applicability of the approach to the mission requirements
b. Meeting payload and launch vehicle interfaces
C. Improving reliability
d. Consideration of cost factors
e. Minimizing complexity
f. Flexibility

I-1
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During the extended study, the tasks that were emphasized, in addition to

those of the modified contract requirements, were (a) reiteration of mission

analysis, (b) review of the power requirements, (c) updating the instrument

interface requirements, (d) detailing the attitude control approach, and (e)

reviewing the candidate configurations. These tasks were oriented toward

assessing the capabilities of the spacecraft approach against the standard

requirements document and the science accommodation factors.

A summary of the results of these tasks is shown in the following appendices.

Appendix A Mission Analysis
Appendix B Attitude Control System Overview
Appendix C Propulsion Subsystem

Appendix D Configuration Discussion
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II. CONFIGURATION CONSIDERATIONS

A. GENERAL

r

The proposed complement of science instruments requires modification to the

spacecraft configuration shown to JPL in the MGO/LG0 presentation and the

Asteroid Rendezvous Spacecraft report.
s	 i,

In addition to satisfying science instrument requirements, the spacecraft

configuration and attitude in all mission phases must satisfy the requirements

for solar array illumination for all phases of the mission as discussed in the

Attitude Control section.

To assist in this discussion a sketch of the proposed deployed configuration

is shown in Figure 1 (see Section D17 for acronyms). The basic spacecraft is

the TIROS -N vehicle mentioned earlier. The main body of the spacecraft has 3

circulary 18-inch diameter thermal louvers along its side pane7a.

The array is shown in the deployed position. When stowed, it is wrapped

f	
around the main body. The .earth facing dish antenna is mounted on the body

E!

	

	 opposite to the Mars facing instrument panel and is gimballed for earth

tracking. In the stowed configuration in the STS during the launch phase, the

antenna boom is folded along the peak of the spacecraft body. The extendable

and retractable booms for the MAG and GRS are located on the side panels of

I^
the spacecraft body.

All other instruments are mounted on the liars-facing panel of the spacecraft,

allowing for the FOV ' s for date collection and cooling needs.

The viewing and cooling FOV requirements for the Mars Orbiter preclude the

location of the solar array and the earth communications dish within the

hemisphere at the space viewing edge of the spacecraft.

The bipropellant tanks and equipment are located at the opposite end of the

spacecraft from the instruments. In the launch configuration, the TOS stage

is mounted beyond the bipropellant. tank housing.

4

f

4.
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Additional information on the configuration including FOV considerations are

included in Appendix D.

B. SCIENCE INSTRUMENT ACCOMMODATION

1. Science FOV Instrument Requirements

As noted in the introduction, (a) one of the series of TIROS/ DMSP series

(TIROS-N) is used as a baseline and (b) there are spacecraft in the series

which can accommodate additional instruments and have added capability in

almost all subsystem areas (Table ). The identification of "excess capabil-

ity" therefore, is limited to the TIROS-N type of spacecraft since it was

selected as the candidate which most closely meets the Mars Orbiter re-

quirements with sufficient margin to guarantee mission performance.

The science instruments were :Ii{hided into three categories for configuration

considerations.

(1) Those which must be segregated from the spacecraft itself (GRS and MAG)

(2) Those which require large FOV's for viewing and cooling (PMIRR, UVS and
UVP)

(3) Those which need a relatively narrow FOV (RA, MVIRS and possibly Radio
Science)

The configuration studies completed to date on the Mars Orbiter, Lunar Orbiter,

and Asteroid Rendezvous studies have shovn that the science instrument comple-

ment can be physically accommodated on the TIROS-N bus. The sketch in Figure 1

shows the diagrammatic layout.

The GRS requires an unobstructed 2 fr Sr view of the nadir point. The magne-

tometer (MAG) must be kept free from magnetic fields of strength that interfere

with its measurement capability. They are, therefore, located on extendable

booms which are retractable for those thruster firing periods that would apply

r"

	

	 undue stress to the booms. Consideration has been given to mounting both on

the same boom but insufficient knowledge is available at this time to make a

^.,	 firm decision. The GRS will require a view of space and sunshield to provide

cooling.

m
Trs instrument mounting panel has been lengthened for two reasons.

II-3
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(1) To provide a mounting platform for coolers
(2) To locate the PMIRR, UVS, and UVP where they have an unobstructed view

for their particular FOV's (especially the UVP which must observe the
zenith regio)

i

Since the RA need only view the nadir, it is mounted at a convenient point

between the other instruments on the Mars facing panel and the b,propellant

system housing.

2. Science Instrument Constraints

Because of past experience in mounting many types of instruments on TIROS/DMSP

spacecraft of several different configurations (over 60 spacecraft to date,

few of which carry identical instrument groups), it appears that no major

physical constraints result from mounting them on the TIROS-N spacecraft.

When additiocial data becomes available ( the large instrument contingency power

figure in the standard requirements document suggest that added requirements

are forthcoming) further refinement of these conclusions will be possible.

The requirements of the science instrument have been reviewed during the

extended study. This review has resulted in the following conclusions.

(1) The instruments can be accommodated on the TIROS spacecraft.
(2) The combined FOV requirements for instrument viewing and coolers put some

constraints on the candidate configurations, however, if these are
considered of major consequence to JPL, these can be accommodated by the
advanced TIROS-N spacecraft.

(3) Science data can be collected in accordance with the various mission

phases as defined by-JPL with the constraints that the most of the image
data collection during the phasing orbit is restricted to the polar
region. However, all other instruments can be operated selectively
during this phase.

1w-

^	 9
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III. SPACECRAFT BUS SUBSYSTEM ASSESSMENT

A. GENERAL

The first assessment of the ability of TIROS -N spacecraft bus to accommu4ova

the science instrument payload needs resulted in the following overall

evaluation.

Subsystem Preliminary Assessment of Marlin
p

Power Sufficient - have some margin in the

-cruise mode and also in phasing orbit

(if all instruments are not used full

time in every orbit)

Command Sufficient - requires interface matching,

but exceeds needs

Data Handling Basic elements meet requirements, after

removing some tape recorders from
t

TIROS -N spacecraft

Structure Sufficient area for instruments. 	 Can

go to larger ATN body if added mounting

area is required

Thermal Sufficient - adapts to mission

requirements

Attitude Control Probably exceeds pointing accuracy

requirement, depending on accuracy of

ephemeris data at Mars
I

a
Propulsion i

Reaction Control Sufficient propellant and m,Grgin for
,
y

use in attitude control

TOS engine Approximately 10% margin for 500 kg

TIROS-N baseline

Biprop System Sized for mission, can add propellant

Communications Sufficient.	 Antenna pointing to DSN
f

Pa meets requirements

(See following discussion	 attachments for further details.)and
bin
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B. SPACECRAFT BUS EXCESS CAPABILITY

1. General

The basic ground rule for the selection of the spacecraft to meet the Mars

Orbiter mission has been to maintain the flight -proven integrity of all

equipment to assure mission success ( see Figure 2).

The TIROS-N bus was selected for this application since the science instrument

mounting could be accommodated on an existing structure, the command and data

handling and attitude control subsystems have the flexibility to adapt to mis-

sion requirements through the addition or deletion of flight -proven equipment.
i

No new significant unproven component design or techniques are required to

accommodate this mission.

2. Power Subsystem

The power requirements of the TIROS series of operational satellites vary with

the payload needs. As a result, the solar array area and the numbers of

batteries have been increased as mission demands grew. The power supply

electronics design which have been qualified and/or flown span the mission

requirements for the Mars mission. Therefore, in the event the science

instrument contingency factors in the JPL standard requirements document are

invoked, the TIROS-N bus can be upgraded to the advanced TIROS-N or, as in the

past, an ATN power subsystem can be adapted to the TIROS-N bus.

With regard to "excess capability", adequate margins have been included to

provide the required power for the mission. However, an excess in power

capability is available during the cruise phase and during the phasing orbit,

if the full science instrument payload is not required for the total orbit

time.

3. Command Control and Data Handling,

Although some additional functions may be required such as a commar3 formatting

unit to convert DSN uplink to terniary form required by the spacecraft command

I1I-2
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A
distribution unit,	 the basic command system meets the command requirements.

However, control signals to meet STS safety requirements and to accommodate

relay drive or switched power requirements must be included. 	 The telemetry

handling and formatting system of the TIROS information processor (TIP) can be

used to accommodate the ranges of digital data required for the mission.

Defining "excess capability" in the command and controls subsystem is difficult

since the details of the command structure requirements have not been identi-

fied in detail. However, the SCP-234 computer utilized with the launch and

orbit phases of the TIROS-N/DMSP spacecraft has a 32K read/write memory with
single error correction/multiple-error detection capability and should provide

extra capability for the mission if configured as on TIROS-N/DMSP where two

computers provide either redundancy or additional performance as desired. The

TIROS system provides a master clock at 5.12 MHz at one part in 108 per day,

and two parts in 106 per year. If more precise clocking signals are re-

quired, the clock included by RCA in the NOVA satellites provide selectable

increments to one part in 10 10 per day.

The information processing capability of the TIROS information processor (TIP)
can handle rates up to 16 kbps which can be supplemented to provide the 32

kbps rates desired. The DMSP system includes a programmable information

professor (PIP) which may be considered for use here.

The TIROS system includes more tape recorder capacity than required, there-

fore, three recorders would probably be removed, providing additional power,

space, and weight for other purposes.

4. Attitude Control Subsystem

The attitude control subsystem (see Appendix B) meets the mission require-

ments and may provide excess capability in its ability to orient the space-
craft, so as to provide both attitude knowledge and pointing accuracy up to

five timee the requirements for the data collection phases of ti,a orbiting

mission provided that the ephemeris data is known to the required accuracies-.r	 r

JPL may have the information from past Mars missions which may permit a better

assessment of this added capability.

V
	

II1-4



5. Structure
o4

The structure of the TIROS-N spacecraft was designed to provide a variety of

instrument complements, with the capacity for growth along the major axis of

the spacecraft (see Table 1). An optimized layout for instruments on a

particular spacecraft selected from the TIROS series should not include

"excess capability" per se. However, added space for instruments can be had

by selecting a later TIROS or DMSP spacecraft shown in Table 1.

6. Thermal

The thermal subsystem is also optimized to satisfy analytical results and

predictions for thermal requirements for the mission. Added blankets,

louvers, etc., the require little or no power can be added at a weight

penalty. Added heaters cause a penalty in both weight and power. No effort

was expended on this effort to provide "excess capability" beyond that which

can be selected in tradeoffs against weight, power, and unique instrument

requirements.

7. Propulsion Subsystem

The TOS stage, the bipropellant MOI subsystem, and other subsystem elements

required for attitude control, momentum dumping, etc., are included in this

section under propulsion.

A margin of 10% or so has been allotted within the TOS stage figures, so that

some additional weight margin is available for assuring mission success fora

500 kg bogey.

The bipropellant liquid propulsion system was sized to provide the capability I

for Mars Orbit Insertion with margin to assure mission success. Here,	 too,

this subsystem was sized for an optimized design with margins, as is true for I

r the in-orbit propellant requirements.

Sufficient propellant can be included to permit JPL to elect to extend the

mission for an additional Mars year (see Appendix 0.

1^	 y
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IV. SUMMARY AND RECOMMENDATIONS

A. The TIROS-N spacecraft bus can satisfy the science instrument interfaces

and the mission requirements of the Mars Orbiter mission.

B. Some 'excess capability" exists on the TIROS-N bus in its ability to

provide knowledge of orientation of the spacecraft and pointing accuracy.

In addition, the command, control and data handling subsystems appear to

have extra capability beyond the requirements defined to date. However,

since the cost impact of this extra capability is reflected only in

recurring costs which are not significant, removal of this capability

would only increase program costs.

C. If added capability is required because of the addition of more science

instruments or for other mission functions, this can be achieved by

modification to the existing design or choosing another TIROS series

spacecraft (Advanced TIROS-N or SAATN, see Table 1).
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APPENDIX A
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MISSION ANALYSIS

Al.	 ORBIT ACHIEVEMENT OUTLINE

For the purpose of introducing the mission analysis for MGCO it is worthwhile

outlining the baseline orbit-achievement scheme. 	 In effect this outline will

summarize the results of the various sections of the orbit achievement

analysis which are discussed in the later sections of this appendix.

In the baseline mission, launch of the MGCO spacecraft will be performed by

the STS and the TOS ( Transfer Orbit Stage).	 The type II Earth-Mars transfer,

launching in 1990 within a 20 day launch window, has been considered. 	 This is

R the reference Earth -Mars transfer for which data has been supplied by JPL.

The combination of this launch system and transfer trajectory yields a high

e launch weight margin over the lift off weight of the proposed modified TIROS
u spacecraft design for the MGCO.

C Injection onto the interplanetary cruise trajectory will be co-planar with the

STS parking orbit. Following separation from the Shuttle, the attitude of the

TOS will be controlled through its burn out by its own attitude determination

and control subsystem (ADACS).	 Separation from the TOS will occur at burn

out.	 The expended TOS will not be targeted accurately enough at this time to
u

impact Mars, and therefore is of no con ,:ern regarding planetary quarantine.

It may be positively biased in order to assuredly miss Mars.

Trajectory trim maneuvers, for launch error correction and for later precision

targeting as Mars is approached, will beg	 g	 pp	 ,	 performed by the integrated bipro-

'°	 pellant propulsion subsystem under command of the spacecraft computer in

r

	

	 accordance with DSN-based tracking for navigation. The budget allowance for

trajectory trims is 100 m/s.

'

	

	 Within minutes of injection onto the cruise trajectory the solar array will be

deployed in order to avail the spacecraft of sufficient solar energy. The

solar array boom, however, will remain folded and captive along the top of the

electronics support module (ESM) throughout the cruise phase. In addition,
W.
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the booms for the GRS and HAG instruments will be deployed during the cruise,

for calibration purposes. The solar array will survive Mars orbit insertion

(MOI) in this configuration, though the instrument booms will be fully

retracted, to be re-deployed later.

l

MOI into an initially highly elliptical capture orbit will be achieved by

using the biprop system to perform a long duration burn, at a low thrust to

mass ratio, along the approach trajectory, which will pass over the North

Pole. The capture periapsis will be targeted to be at an altitude of approx-

imately 360 km. The capture apoapsis altitude may well range between 8000 and

23000 km, depending upon the final nature of the capture burn. The capture

burn is not critical throughout a wide range and thus allows contingency

orbit-achievement strategies. The inclination of the capture orbit will be

90° as a result of the precise targeting of the arrival asymptotic trajectory;

and no plane change will occur on insertion.

Through use of the biprop system around apsidal passes, the insertion orbit

will be adjusted until it is approximately circular at 350 km altitude. Great

flexibility in orbit control will result from this multiple burn insertion

strategy.

The initial o'clock positions for the ascending nodes of the insertion and the

mapping orbits are nominally 4 a.m. and 2 a.m., respectively. Following

insertion, therefore, a drift phase lasting 59 days will ensue, during which

the heliocentric motion of Mars will effect a change in the node o'clock

position between these values. This type of node-changing drift phase has

been proposed previously by RCA for the future STS launched verions of the

TIROS and DMSP spacecraft. In the drift phase, the solar array boom and

possibly the GRS and MAG booms may be deployed in order that science'measure-

ments may be made, especially over the polar regions of Mars, and transmitted

to Earth.

At the end of the drift phase, the biprop system will be used to change the

orbital inclination to 92.87°, and thereby achieve nominalSun synchronism of

the orbit plane.

c A-2
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During the drift and mapping phases of the mission, the eccentricity of the

orbit will vary periodically due principally to the asymmetry of the gravita-

tional field of Mars and also to a lesser extent due to solar gravity perturba-

tions. Cyclical variations in the eccentricity will result in excursions of

the periapsis to lower altitude and associated increases in atmospheric drag.

Drag will be especially significant during passages through the dayside bulge

of the atmosphere around the time of the solar maximum. The biprop system and

possibly the use of a frozen orbit will be employed to limit these variations of

the orbit within acceptable bounds throughout the mapping phase (s>1 Mars year).

It is necessary to ensure that neither the spacecraft nor any other hardware/

debris impacts the surface of Mars prior to the expiration date of the NASA

planetary quarantine policy, at the end of the year 2018. At the chosen end

of life (EOL) of the mission, the orbit will be raised, using the biprop

system, into a stable, initially circular orbit at an altitude of at least 525

km, in order to ensure compliance with the planetary quarantine requirements.

A2. EARTH-MARS CRUISE TRAJECTORY

The reference Earth-Mars trajectory supplied by JPL has been used to define

the baseline MGCO spacecraft design,. This trajectory requires a two impulse

type II transfer; i.e., an injection maneuver for departure from the STS

parking orbit followed by passage through a heliocentric angle greater than

1.80° and an insertion maneuver for MOI.

Realistic launch considerations dictate thatat least 20 consecutive days be

available for launching an interplanetary mission. The principal character-

istic features of this transfer, incorporating a 20-day launch window, are

shown in Table A-1.

This trajectory is optimum in the sense of allowing delis. ,ery of the maximum

mass into orbit around Mars. In fact, however, the results of the "excess,

performance capabilities" ,study reported for the propulsion system in Appendix

C has identified some margin in useful spacecraft weight (currently estimated

to correspond to 111 kg for the maximum TOS capability) over the minimum

spacecraft weight necessary to perform the reference'extended mission. As one

possibility, it is feasible that this margin could be traded off against

A-3



unnah Date (1940) 1

First
Launch Date

Last
Launch	 Date Gaits

August 20 September 9

Launch Erargy - C3 16 .29 15 .81 (Waec)2

Launch Declination2 4.8 -0.2 deg

Apr_ivla Date	 1 August 12 August 30

Flight Time 357 $55 days

Arrival V-infinity 2.712 2.954 kn/soa
Arrival Declinatioa3 33.3 34.5 deg

ZAP Angles 55.1 53.4 dot

1 Launch and arrival times assumed at 0000 Sours OT.
2Earth Equator and Equinox of 1950.
3Mars Equator and Equinox of Date.
43un - Mars - V-infinity Angle.
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widening the set of possible Earth-Mars trajectories, e.g., to reduce the

insertion retro-velocity requirement.

The worst-case values of C 3 and V. for the reference trajectory and a
20-day launch window, i.e., 16.29 km 2 /s 2 and 2.954 km/s, have been taken

together as a pair in order to define the baseline spacecraft design. In

fact, as shown in Table A-1, these worst-case values do not occur simultan-

eously. Taking the two as a pair, therefore, introduces conservatism into the

design. When the actual combinations of C 3 and V. are considered in the
next study phase, the weight margin will undoubtedly be higher than reported

herein.

The value of declination of launch asymptote, DLA, varies between 4.8° and

-0.2° over the launch window. The relevance of DLA is illustrated in Figure

A-1.

TABLE A-1. TWENTY-DAY LAUNCH PERIOD FOR 1990 MGCO REFERENCE MISSION

.i
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PLANE

STS 1^,/	 \
ORBIT

PROJECTION OF LAUNCH
ASYMPTOTE ONTO	 "`r
EQUATORIAL PLANE

I e PARKING ORBIT INCLINATION
OLA . DECLINATION OF LAUNCH ASYMPTOTE

4C DLA C1

IL C 570 FOR STS LAUNCHES

NO PLANE CHANGE INVOLVED IN
THE LAUNCH FOR THE REFERENCE
MGCO MISSION (DLA FOR THE
1990 LAUNCHED TYPE II TRANSFER
IN THE RANGE OF 4.8 0 TO -0.2°
FOR 20 DAY LAUNCH WINDOW).

Figure A-1. STS Launch Geometry

If the inclination of the parking orbit is denoted by I, it may be seen from

the figure that any value of DLA satisfying the relationship -I<DLA<I may

be achieved without a plane change being effected by the upper stage. All
r

x.

	

	
that is required is injection at the appropriate time and position in the

parking orbit. Of course the correct alignment of the launch asymptote must

be ensured by correct orientation of the STS parking orbit, which is deter-

mined through STS launch window selection.

G
Further regarding DLA, it may be shown that for MOI into near -polar orbits, no

plane change will be necessary at Mars, any necessary plane-orientation ad-

justment being achievable at very little propulsive cost by one or more

mid-course maneuvers. This would not be the case were the Mars insertion
,

orbit required to be near-equatorial. The value of DLA, therefore, is not

very significant in regard to MOI for the MGCO mission.
i

A3. LAUNCH SYSTEM SELECTION

A group of twelve launch systems below, are either currently available, soon

to be available, or are conceptual were considered for the MGCO launch.

I
..	 A-5,
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U.rr^i .	 io

I .	 STS/PAM-D
2.	 STS/PAM-A
3.	 STS/IUS Two-Stage
4.	 STS/Centaur F

}

i 5.	 STS /Injection Module (IM)
6.	 STS/PAM-A2
7.	 STS/TOS

u	 I 8.	 STS/IUS-1/PAM-D
9.	 STS/IUS—1/IM

10.	 TITAN 34/IUS Two-Stage (w/o EEC)
11.Delta 3920 /PAM-D

r
y 12.	 Delta 2914

Feasibly, this listing could have been extended to include combinations of

rocket motors, such as the SRM-1, acquired separately and integrated by RCA.

Superficially this approach would seem to allow significant cost reductions,

at the expense of increased complexity and risk.

As a result of these considerations JPL has specified the TOS as the transfer

orbit stage for the MGCO mission.	 The TOS will be commercially available from

Boeing and possibly Orbital Systems Corporation, Inc.

F'r^

The engineering rationale behind this selection may be seen in Figure A-2. In

this figure the payload weight at liftoff for performing the minimum required

MGCO mission, i.e., 1755 kg as detailed in Table C-1, is shown against the

planetary-performance curves of the twelve launch systems.

f[

The launch mass of 1755 kg was calculated starting from the end of life (EOL)

"useful -mass" of the MGCO spacecraft of 500 kg (excluding propulsion system
mass). The r-,quirements and constraints that were figurad into the calcula-
tion are

e Bipropellant I. = 312 seconds through MOI, and is ,conservatively
estimated thereafter

• EOL maneuver to achieve quarantine orbit, AV - 82.3* m/s.
• Orbit maintenance maneuvers, AV - 151* m/s
e Inclination change (phasing-+mapping orbit), AV = 168.5* m/s
• MO I maneuvers (divers scenarios), AV 2365* m/s
• Trajectory correction maneuvers, AV _ 100 m/s
• helium mass - 4 kg
• TOS adapter mass = 100 kg

*includes inefficiencies due to low thrust and also to the predicted
performance dispersions

_	
J.
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Note that the term "Launch mass" as used here ?includes the mass of the adapter

between the TOS and the MGCO spacecraft, which is currently estimated to be

100 kg.

It is clear that even the minimum throw mass of the MGCO spacecraft is beyond

the capability of the STS/PAM-A and all less capable systems.

The next more powerful launch system beyond the STS/PAM-A is the Titan 34/IUS

Two-Stage. Tl►.is is not a favored launch system for several reasons. First,

bott ► the Titan 34 booster and the IUS Two -Stage will be much more expensive

than the baseline choices, which are the STS and the TOS upper stage. Second,

the IUS Two-Stage has a limited expected production run, especially now that

the development of the STS/Centaur F has been recommended. Third, by the time

of the MGCO mission launch, 1990, the STS will be fully operational.

For the minimum throw mass of 1755 kg, the TOS would be offloaded by approxi-

mately 10%. It may be seen in both Figure A-2 and Table C-1 that the maximum
throw mass capability for the ;!'OS is approximately 2080 kg. Appendix C

describes how this throw mass margin of 325 kg corresponds to an increase in

the "useful." spacecraft mass of 111 kg.

A4. LAUNCH PHASE

The launch phase of the mission will consist of boost from the Kennedy Space

Center on board the Shuttle into a c..rcular parking orbit at 2.96 km altitude,

followed by deployment from the cargo bay and injection onto the interplane-

tary cruise trajectory.

The MGCO spacecraft, being evolved from TIROS spacecraft launched by expendable

launch vehicles, will fit easily into the Shuttle cargo bay, even with a Sun/

contamination shield should one be necessary. The spacecraft will be supported

in the cargo bay by a special cradle sCructure which may have some commonality

with the cradle for proposed STS launched TIROS and DMSP spacecraft. A conical

adapter will mount the spacecraft to the TOS. The structure will be capable of

.	 x handling the specified physical environments, the most severe of which will

M	
probably be those during emergency landing of the Shuttle and during TOS firing.
Shuttle emergency landing load factors may typically be x.4.5 g in the Shuttle X

i

A-8



and Z directions. By comparison, the maximum acceleration of the TOS, with a
payload of 1755 kg, will be N4.6 g.

While the spacecraft is inside the cargo bay it will probably require thermal

and contamination shielding. Before deployment the spacecraft will be in a

quiescent, but powered-up state; and some internal heat dissipation will

occur. A full thermal analysis will be necessary in further studies.

Preferably, the design will be made to feature passive thermal control only.

The injection stack will be deployed from the Shuttle by the standard spring

actuated TOS deployment system. The Shuttle orientation at separation may be

held so that the orientation of the stack will be as close as possible to that
required at ignition. The attitude determination system of the TOS will be

initialized while still inside the Shuttle. Following separation and through

the TOS burn the attitude of the stack will be controlled by the RCS and

gimballed thrust nozzle of the TOS. It is worth mentioning here that since
the TIROS-based MGCO spacecraft will have its own attitude determination and
control subsystem (ADACS), of a different injection stack (e.g., a stack

incorporating the SRM-1 integrated by RCA) by the spacecraft is feasible.

Following separation, there will be a period of between approximately a half

to one orbit during which the stack will drift to a clearance distance from

the Shuttle that is safe for ignition.

At the appropriate moment, the TOS is ignited. The nominal burn time is 146

i'

	

	 seconds. At burn out the orbital velocity (with respect to the Earth) will

have been increased from 7.728 km/s to the value corresponding to the desired

C3 . For the 1990 launch, type II reference transfer, the maximum value of

C' 3 during the 20-day launch window, i.e., on 20th August (the first day), is

16.29 km
2
 /s2

Accordingly the relationship

1
2 uE	

/2

Vinject.on 0 IC 3 + r
owhere C 3 square of the departure hyperbolic excess velocity

uE gravitational constant for Earth _ 398,601 km2 /0 2

ro = initial orbit radius = 6,b74 km

ZOO



gives the injection velocity of 11.651 km/s. The TOS, therefore, imparts a

velocity increment of 3.923 km/s to the stack. The geometry of the injection

is shown in Figure A-1 and has been discussed in Section A2.
r.

j	 A5. EARTH-MARS CRUISE PHASE

d

The type II Earth-Mars transfer of the reference mission features a "coasting"

trajectory which is essentially a section of an elliptical orbit around the

Sun through a heliocentric angle of approximately 250°.
1

c'

For the reference 20-day launch window the transfer time is almost constant at

357 to 355 days.

Plots of the development of pertinent spatial relationships relating to the

geometry between the spacecraft, Mars, the Earth and the Sun, are shown in

.	 Figures A-1 through A-11 for the reference cruise trajectory launching at the

opening of the window (i.e. cruise phase between 8/20/90 and 8/12/91).
P

Figures A-12 through A-20 are the analogs,of Figures A-3 through A-11 for the

reference cruise trajectory launching at the closing of the window, (i.e.,

cruise phase between 9/9/90 and 8/3/91). Figures A-3 and A-12, the chase

diagrams, are useful in aiding visualization of the relative orientations of

the spacecraft and these celestial bodies. Note that the Sun angle referred

j	 to in Figures A-7 and A-16 is the angle between the Sun direction and the

normal to the Earth-Mars transfer plane. It is shown here to indicate how far

the cruise trajectory departs from the ecliptic plane, and how the Sun

incidence angle would vary if the spacecr a ft were held inertially fixed,

aligned with the normal to the cruise trajectory. The information shown

graphically in these figures has been incorporated into the analyses of the

	

	 y,yl

configuration and of the communications, power and thermal subsystems for the 	 I

MGCO spacecraft.
i

Figures A-8, A-9, A-17, and A-18 show that for trajectories following launches

through the 20 day reference launch window, there are no conjunctions, or

close conjunctions, of the Sun and spacecraft as seen from the Earth, nor of

F»	 the Earth and the Sun as seen from the spacecraft, to cause degradation or

interruption of communications.

r
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Figure A-16. 1990-91 Type II Mars Transfer Sun Angle History
(Closing of 20-Day Launch Window)
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Following very soon after burn out of the TOS, the spacecraft will separate

from the spent TOS and the launch ada)ter. The jettisoned stage will not be

targeted accurately enough at this time to intercept Mars, and will not be of

concern regarding planetary quarantine.

At this time the ADACS of the MGCO spacecraft, which are described in Appendix

B, will be initialized by the celestial sensor and will take over control of

spacecraft attitude.

Within approximately ten minutes, the solar array will be fully deployed, like

a wing along the apex of the ESM, in order to avail the spacecraft of suffi-

cient solar power during the cruise phase.	 The solar array boom will remain

folded and captive until after MOI in order that the solar array and the

t thruster plumes of the on board bipropellant propulsion system will not
s

interfere with each other during MOI.

During the cruise phase, the spacecraft will be oriented according to con-

siderations arising chiefly from power management and thermal control.

Adequate viewing of the Sun and reference stars by the sensors of the on board

attitude determination system in all spacecraft orientations will be ensured

by the spacecraft configuration design and use of a 4n steradian Sun sensor. 	 $

Basically, the normal to the plane of the solar array will be aligned with the
b
s Sun direction in order to achieve maximum generation of solar power. As dis-

cussed in Section III B2 of the attached main document, however, the demand

for power will be low compared to that available, except during the infrequent

and short duration periods of science-instrument checkouts. 	 Freedom to align

the solar array normalaway from the Sun, therefore, will exist and will be

used to aid in thermal control and to obviate the shunting of large electrical
rr

currents to dissipate excess solar power.	 Relative freedom of the orientation	 1

of the spacecraft about the line towards the Sun will exist during most of the
^y

cruise phase (cf. Appendix B).

` While the spacecraft is within T^S km of the Earth during the cruise phase,

f -	 down links via the X-band omni antenna will be strong enough for the planned

science and spacecraft functions check outs.	 For these high data-rate check-
Off

outs at greater distances, however, use of: the X-band high gain antenna 	 (HGA)

.will be necessary.	 The configuration design of the 2-axis gimballed mounting

p.
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for the HGA will ensure Earth pointing capability of the HGA without dis-

turbance of the orientation of the spacecraft set by power and thermal

considerations.

i

It is feasible to incorporate any or all of several techniques for the estab-

lishment of the HGA link with the Earth at any time in unpowered flight

including potential loss of lock situations. The proposed ' X-band omni antenna

will permit the receipt of commands from the Earth regardless of the orienta-

tion of the spacecraft. In addition, several Earth search strategies may be

programmed into the spacecraft computer for application should no commands

from the Earth have been received within a preselected, commandable length of

time.

Occasional minor "mid-course" trajectory correction maneuvers ( TCMs) will be

performed using the on-board bipropellant system under control of the

velocity-metering guidance system acting upon stored commands uplinked from

the Earth via the DSN. These TCMs will ensure the correct geometry for the

arrival hyperbolic asymptote at Mars. In the reference mission, these TCMs

involve a total of AV of 100 m /s (impulsive), which for the minimum mass

spacecraft capable of fulfilling the extended-mission requirements, i.e. an

initial cruise phase mass of 1655 kg ( separated), corresponds to the expendi-

ture of approximately 5^, kg of MON -3+MMH bipropellant and helium pressurant,

as indicated in Table 0-2. For the TCMs, the spacecraft will be reoriented

for correct pointing of the RCS . thrusters under control of the on board ADACS.

At some preselected time during the cruise phase, the GRS and MAG instruments

will be deployed on their respective booms. This deployment may occur in step

fashion in order to allow the use of differential calibration techniques for

these instruments. Since these booms will be TBS meters long, they will almost

certainly have to be retra <.- ted prior to any propulsive maneuvers, i.e. TCM's,

the MOI maneuvers and orbit maintenance maneuvers, ir: order to permit fast slew
n

	

	
rate performance by the helium attitude control system and to ensure survival

of the booms. The TCMs and orbit maintenance maneuvers may be performed using

smaller thrusters than thos used for MOI.

Several hours prior to commencement of the MOI maneuvers, the spacecraft will

be re-oriented and held so that the resultant thrust vector of the low main

t	 #
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bprop engines will be aligned tangential to the hyperbolic arrival trajectory

at the scheduled time of commencement of the first MOI maneuver, i.e., the

capture maneuver. This reorientation will be performed open-loop, and a trim

maneuver will then be made under ground command. It will be performed early

enough that thorough verification of its accuracy may be made using the on-

board attitude determination system. Pointing control during the burn will be

performed by the on-board CPU using information from the on-board guidance

system. The requirement for thruster pointing prior to and during propulsive

maneuvers still allows freedom of orientation about the thrust axis and, there-

fore, allows maintenance of the HGA link and of power and thermal control.

A6. MARS ORBIT INSERTION

A6.1 Arrival Conditions

The geometry, timing and AV for the Earth departure maneuver effectively

determine the Earth -Mars transfer trajectory. In turn, this trajectory,

refined by TCMs, determines the conditions of arrival at Mars.

Before entering the gravitational sphere of influence of Mars, the spacecraft

will have an arrival hyperbolic excess velocity (relative to Mars), V-, of

between 2 . 114 km/s and 2.954 km/s, for launches at the opening and closing of

the 20- day launch window of the reference mission respectively. This is shown

in Table A-1. It can be seen easily, therefore, that the spacecraft will have

positive energy in the Mars reference frame when one considers that, by com,-

parison, a body with zero energy in the Mars reference frame, ejected from the

planet at the escape velocity, would arrive at infinity with zero velocity

relative to Mars. Accordingly, the spacecraft will follow 'a planar, hyperbolic

trajectory around Mars unless it is either targeted to impact the planet or is

acted upon by the on board propulsion system. The angle between the notional

undisturbed arrival and departure asymptotes would depend upon the closeness

of approach to Mars of the arrival asymptote.

In the proposed baseline MGCO spacecraft design, the thrust level of the
^.•	

biprop system is low, being produced by four 490 N engines, in order that the
.n	

deployed solar array will survivethe shock and acceleration levels of

propulsive maneuvers. In comparison it may be seen from Table C-2, as

4

w
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examples, the masses of the spacecraft at the beginning and end of MOI for the

extended mission are 1916 kg and 883 kg. The corresponding range of decelera-

tion during thrusting is 0.23 g to 0.10 g. The choice of a low thrust to mass

ratio for the TIROS-based MGCO spacecraft causes a inefficiency penalty of

only N5% in the MOI maneuvers and yet adds great flexibility to the orbit

achievement scenarios, as described in Section A6.2.

The spacecraft will be targeted to enter an elliptical capture orbit with a

periapsis altitude of approximately 350 km. The capture orbit will be co -
planar with the hyperbolic arrival trajectory, which will have been arranged

through TCMs to produce a precisely polar orbit, i.e., at 90° inclination. As

indicated in Figure A-21, in the Mars reference frame the arrival asymptote

for the reference mission approaches from the dawn sector, at an hour angle of

approximately 0400 hours. In the reference mission the desired initial orbit

has an early morning ascending node. Accordingly, the arrival asymptote will

be targeted over the North Pole of Mars. Since the capture burn will be of

long duration, the initial periapsis will be approximately over the equator,

i.e., will have an argument of approximately 180°.

A6.2 Selection of Mars Insertion Scenarios

A6.2.1 INTRODUCTION

The selection of the elements of the Mars insertion orbit involves the careful

matching of many constraints and requirements such as arrival geometry, pro-

pulsion system type and capability ; mission science requirements, spacecraft

requirements [s..¢., power), planetary quarantine restrictions, etc. The inter-

active process is illustrated schematically in Figure A-22 and is discussed in

this section. The basic geometry of the MOI is shown in Figure A-23.

A preliminary analysis of the MOI scenario for the low thrust to mass ratio of

the TIROS-based MGCO and the corresponding propulsion requirements are pre -
sented in Section, A6.2. Since the navigation function will be performed by

JPL, only certain aspects of the attitude control required for the insertion

burns are discussed here, as they pertain to the nominal phasing orbit for the

A-23
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reference mission, which is polar and circular at 350 km altitude. The

impulsive AV requirement for direct insertion has a maximum value of 2240',

m/s, corresponding to launch on the last day of the 20-day launch window.

As described in Appendix C, the total thrust level for the TIROS -based MGCO

spacecraft design is 'limited to approximately 1980 N. Using this value of

thrust together with the other characteristics of the payload and the baseline	 +

propulsion subsystem design, it may be calculated that a burn duration of

between 20 and 30 minutes is required to produce the necessary AV for direct

t

	

	 insertion into a circular orbit at 350 km altitude above Mars. Such an inser-

tion would involve a AV penalty of 175 m /s over the impulsive requirement.

Better performance could be obtained by splitting up the burn into say two

parts. The first burn would capture the spacecraft around Mars and take it

into an intermediate elliptical orbit..- The second burn, at a later periapsis

passage, would circularize the orbit at 350 km altitude.

For an impulsive direct insertion at a periapsis altitude of 350 km the

approach hyperbola would be targeted so as to also feature an altitude of

closest approach of 350 km. For the proposed low thrust level insertion of

the TIROS based MGCO, however, the altitude of closest approach of the

notional undisturbed approach hyperbola would be targeted higher in order to

compensate for the reduction in periapsis altitude due to the long duration of

the burn. The estimated increase in altitude necessary is approximately 250

km, as discussed in Section A6.2.2.

A6.2.2 SIMULATION OF TWO BURN SEQUENCES

Simulations of the orbit insertion have been performed to the preliminary

analysis level for the two cases of:

(1) maximum capability of the TOS, and

(2) minimum spacecraft mass necessary to fulfill the requirements of the

reference extended mission

!1
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For the maximum TOS capability the mass of the spacecraft on arrival at Mars

is 1916 kg, as shown in Table C-2. 	 The corresponding required altitude of

closest approach for the notional undisturbuted hyperbolic trajectory is 600

km (raised from the 350 km for the impulsive insertion). 	 Table. A-2 shows the

details of the scenario as obtained from the simulation. 	 The first burn

results in a 8348 x 361 km altitude orbit.	 On the next periapsis passage,

app!,oximately 5.5 hours later, the second burn takes the spacecraft into the

4

desired circular orbit at 350 km altitude.

if
For the minimum-mass spacecraft fulfilling the reference extended mission

' requirements, i,he mass of the spacecraft on arrival at Mars is 1598 kg, as

shown in Table C-2. 	 The altitude of the notional undisturbed approach is

again 600 km, as in the case of the first simulation. 	 Table A-3 shows the
first burn results in a 6426 x 356 km altitude orbit, and the second burn

circularizes at 350 km altitude.

c
In both simulations, the AV penalty for the low thrust insertion (over the

impulsive requirement) is approximately 100 m/s i.e.	 -4.5%.	 In the actual

event of thruster firings, there will be a small additional penalty due to

dispersions in the performance of the components of the propulsion system

about their nominal performance levels.	 For the maximum TOS capability case

presented in Table A-2, the dispersion penalty has been estimated at_N25m/s.

The estimated total thrust penalty (over impulsive) for the MOI manuevers,

therefore, is estimated at approximately 125 m/s, 	 i.e.	 w,5.6%.

In the proposed baseline scheme the total thrust is produced by a set of four

thrusters, acting as two opposed pairs. In the case of failure of a one or

both thrusters of a pair, only the unaffected pair would be allowed tooperate;

and consequently	 thrust level would be reduced by half. This contingency/

r	 "failure" insertion mode will require very long burns, but is entirely accept-

able. If such a malfunction were detected early enough, the hyperbolic

approach trajectory would be retargeted, the commencement of the burn would be

i	 advanced, and the number of burns would be increased. Table A-4 shows the

results of the simulation of such a scenario. Apportioning the total velocity

decrement between four shorter burns compensates the higher inefficiency

_	 A-27

f



TABLE A-2. ORBIT INSERTION SCENARIO - 1

Mass: 1916 kg
Thrust: 1780 N (400 lbf)

Propellant: Bipropellant, I sp = 310 s

Hyperbolic Excess Velocity V. - 2.954 km/s

Closest Approach to Mars of Hyperbolic Orbit: 600 km

Spacecraft Mass
Burn in Insertion Resulting Orbit Altitude (km)

Burn Time AV Orbit
No. (Min) (m/s) (kg) Apoapsis Periapsis

1 21.7 1544 1153.6 8347.6 361

2 7.5 795 892 350 350

Total 29.2 2339

Impulsive AV: 2240 m/s

Finite Burn AV Penalty: 99 m/s

Max. Spacecraft Acceleration: 1.99 m/s 2 (0.2 g)

TABLE A-3. ORBIT INSERTION SCENARIO - 2

Mass: 1598 kg

Thrust: 1780 N (400 lb f)

Propellant: Bipropellant, Isp = 310 s

Hyperbolic Excess Velocity V - 2.954 km/s
s	

Closest Aoproach to Mars of

co

 Hyperbolic Orbit: 600 km

Spacecraft Mass
Burn In Insertion Resulting Orbit Altitude (km)
Burn Time AV Orbit
No. (min) (m/s) (kg) Apoapsis Periapsis

1 19 1643.8 931.1 6425.8 356.2

2 5.4 629.9 742 350 350

Total 24«4 2273.7

i
Impulsive AV: 2240 m/s

Finite Burn AV Penalty: 96.7 m/s

Max. Spacecraft Acceleration: 2.40 m/s 2 (0.24 g)

A-28
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FABLE A-4. ORBIT INSERTION SCENARIO WITH HALF THRUST LEVEL - 3

r

.a

Mass: 1916 kg

i
Thrust: 890 N ( 200 lbf )

Propellant: Bipropellant, Isp n 310 s

Hyperbolic Excess Velocity V. ` 2.954 km/s

Closest Approach to Mars of Hyperbolic Orbit: 600 km

Spacecraft Mass
Burn in Insertion Resulting Orbit Altitude (km)

Burn Time AV Orbit
No. (Min) (m/s) (kg) Apoapsis Periapsis

1 35.4 1195 1290 26666.5 405.7
2 10 445 1120 6478.6 386.1

3 10.8 565 930 993.6 360

4 2.2 135 880 350 350

Total 58.4 2340

Impulsive AV: 2240 m/s

Finite Burn AV Penalty: 100 m/s

Max. Spacecraft Acceleration: 1.01 m/s 2 (0.1 g)

otherwise associated with the lower thrust level. The corresponding AV

penalty (compared to impulsive) is the same as that shown in Table A-2.

I	 Contingency plans for other failure modes will be examined in later study
phases.

It should be noted that the nominal. pitch and yaw controls during thrusting
for TIROS/DMSP spacecraft are achieved by off-pulsing one or more of the set

of four thrusters. Hence, with a half-system operation, this primary control
is lost about the corresponding axis, and the backup pitch/yaw control is

provided by the gas thrusters, which are helium, engines in the proposed MGCO

K
	 design.

For the thrust characteristics of the proposed design, the MOI simulations

presented in this section represent reasonable, though not optimized scenarios.

Considering the smallness of the calculated AV penalties compared to the

impulsive case, however, optimization would not yield a-substantial

improvement.
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A6.2.3 GUIDANCE AND CONTROL CONSIDERATIONS

Splitting up the orbit insertion burn is preferable not only because it
reduces the finite burn AV penalty, as described in the previous section

(A6.2.2), but ' also on grounds of guidance considerations. An intermediate

elliptical orbit would permit accurate orbit determination; and any deviation

_	 from the nominal could be ascertained and then corrected in the next burn. An

	

r	 intermediate orbit would also .permit calibration of the effective thrust level,
r

which would be off from nominal due to the off-pulsing of the thrusters for

	

t	 steering. Hence, the next burn could be targeted more accurately.

The simulations described in Section A6.2.2 assumed tangential thrust. Pro-

grammed pitch-over would therefore be required for steering during the burn.

Pitch and yaw control during the burns may be done by off-pulsing one or more

of the four thrusters. Off-pulsing the main thrusters, however, would reduce

the effective thrust level and make the burns a little longer. Roll control

is achieved by use of the helium thrusters.

Some amount of backup pitch and yaw control during burns may be achieved by

use of the helium thrusters. This would be necessary if one of the main

thrusters failed and consequently a half-system had to be used.

	

rt	 Prior to a burn, the spacecraft will slew from its cruise attitude into the

required initial burn attitude. After the burn, the spacecraft will slew back

to the cruist attitude. This will minimize the duration of possible communi-
cation and power losses.

Checking the orientation of the Sun and the Earth in relation to the capture

orbit,- however, the Sun and the Earth make angles of approximately 172° and

155° with the normal to the insertion orbit. With the antenna located on top

of the "ESM", on the same side as the solar array (with boom retracted), and

, f with freedom in. choice of roll attitude during burn, there maybe little or no

disruption in communication and power due to the re-orientations of the

'._	 spacecraft for the MOI burns,



The GRS and HAG booms will be retracted during the burn sequences. This will
It 	11	 1

be done even if they can withstand the shock and acceleration levels, since

retraction will reduce the moments of inertia and so speed up the slew

«	 maneuvers.

Attitude update prior to burns will be done in the same manner as during the

interplanetary cruise. For each maneuver, velocity gained will be controlled

by the on-board velocity metering guidance system.

A7. DRIFT ORBIT PHASE

Following MOI, the spacecraft will be slewed into an orientation similar to

that in which the Earth orbiting TIROS and DMSP spacecraft fly during their

operational phases, i . e. with the pitch axis along the long axis of the

spacecraft and the bottom face of the ESM held nadir-pointing. Attitude

determination and control during the orbital phases around Mars are described

in Appendix B. If Earth lock of the HGA is not maintained during MOI and the

associated re-orientations, it will be re-established either upon ground

commands via the omni antenna or under control of the stored Earth-search

command sequence whenever necessary.

4 I

1A

Within minutes of reorientation, the solar array boom will be fully deployed

and the cant angle will be adjusted to achieve normal incidence of sunlight on

the solar array and, thereby, maximum power generation.

At this point in the mission, the high pressure helium tanks will be isolated

from the propulsion system by a pyrotechnic valve. This isolation of the high

pressure helium will reduce the potential for pressure loss through leakage

during the mapping phases of the mission, which may extend to two Mars years

or further. The propulsion system will be capable of operation from then on

in the blow-down mode, under the pressure of the helium already inside the

propellant tanks. Since a redundant pair of pyrotechnic valves is featured in

the design (cf. Appendix C) the helium pressure in the propellant tanks could

be restored at least once, if necessitated by say a small gas leak on the low'

pressure side.
I

e	 ^	 ^

A-31	
f

tfr- r

t

i

^n^-



Since the minimum energy Earth-Mass transfer is used in the reference mission,

the phase angle of the insertion orbit will be approximately 60°. The require-

ment that the initial orbit phase angle of the mapping orbit soall be 30°,

therefore, slightly complicates the orbit achievement strategy. The reference

mission incorporates a drift/phasing orbit phase following MOI so that in the

Mars reference frame the phase angle of the insertion orbit will precess from

its arrival value, i.e. nominally 60 ® 1 to the desired value, i.e. nominally

30°, at which time the orbit will be adjusted to be Sun synchronous.

Since the inclination of the insertion orbit for the reference mission is 90°0

the orbital plane will be virtually inertially fixed in the celestial reference

frame. Consequently, in the Mars reference frame the orbit plane will precess

at the same rate as that at which Mars orbits the Sun. The mean heliocentric

rate for Mars is approximately 0.52°/day; but since arrival at Mars occurs

near the aphelion of Mars, the precession rate over the first few months will

be ti 0.43°/day. In the reference mission the drift phase lasts for 59 days,

resulting in a final orbit phase angle of nominally 30°, i.e. an ascending

node o'clock position of 0200 hours. The orbital geometry at the end of the

drift phase is shown in Figure A-24.

Several alternative schemes for achieving the desired initial phase angle of

the mapping orbit are more costly in terms of propulsion requirements, and

have been rejected. For example, an Earth-Mars transfer could be selected

such that the arrival plane and the desired initial orbit plane are coplanar.

Another inefficient scheme involves arrival along the minimum energy Earth-Mars

trajectory, just as in the reference mission, followed by propulsive changing

of the plan of the resultant insertion orbit to the desired orientation. It

is much more useful, however, to use any available margin to extend the life--

time and/or the orbital adjustment capability for the mapping phase and/or to

increase the payload capability. Furthermore, operation of the spacecraft for

the 59 days in a precisely polar drift orbit of the reference mission allows

science measurements to be made over the polar regions. Since the inclination

of the mapping orbit will be 92.87 0 , for Sun synchronism, the regions close to

the poles will not be seen by the instruments during the mapping phase (.cf.

discussion in Section A8)0

P 
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In essence, the MGCO will function in the drift orbit just as it will in the

mapping orbit, with the exception that the orbit phase angle will be changing

continuously at a relatively high rate, as described in the second paragraph

above.

Plots of the time development of several pertinent spatial relationships for

the reference mission from the time of arrival at Mars are shown in Figures
A-26 through A-29. These figures correspond to a launch at the opening of the

20-day launch window of the reference mission. Similar plots corresponding to

a launch at the closing of this launch window would start 18 days later.

These figures show several geometrical relationships between Mars, the Earth

and the Sun for three Mars years after arrival. Figure A-25, however, shows

the chase plot for only the first Earth year after arrival. The information

shown graphically in Lhese figures has been incorporated into the configura-

tion, communications, power and thermal analyses.

It may be seen from Figures A-25 through A-29 that upon arrival of the

spacecraft at Mars the relative positions of the Earth, Mars and the Sun are

among the worst that occur during the mission. The solar range, at N1.65AU,

is close to its maximum value, though decreasing. The Earth range, at 2.5AU,

is close to its maximum value, and increasing.

In addition, conjunction (of Mars and the Sun) occurs approximately 80 days

after arrival, i.e. approximately 29 days after the start of the mapping orbit.

Temporal relationships between the different orbit phases, Martian seasons,

Martian dust storms, and heliocentric coordinate references are shown in

Figure A-30.	 j

In order to tailor the mission to the varying mission geometry, the science

measurement rates (and thereby the data handling, communications and power 	 i

requirements) will be relaxed during adverse periods such as the arrival

period. Furthermorer short shut down periods, typically of less than 20 days

duration,, will be unavoidable around conjunctions, as for the Viking mission.

i

	

	 During science measurement phases of the mission, the solar array will be

oriented for normal incidence of the solar radiation, i.e. for maximum

power output, by use of the proposed two-axis control of the array. The

1,.	 A-34	 r
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time development of the Sun angle throughout the drift phase is shown in

Figure A-31. The Sun angle here is defined as the angle between the Sun.

u

	

	 direction and the positive orbit normal. Another important environmental

factor affecting the power subsystem, the time in solar eclipse per orbit

increases to 40 minutes from an initial value of 30 minutes during the drift

phase, as shown in Figure A-32. Also of importance for power balance, as well

as for communications planning, is the time of occulatation of the Earth by

Mars ' per orbit. This increases from approximately 10 to 40 minutes during; the
drift phase, as shown in Figure A-33.

Local time coverage of the drift orbit progresses uniformly from the initial 4

a.m. 4 p.m. zone to the 2 a,m. - 2 p.m * zone, i.e. the ascending node drifts

towards the midnight sector as shown in Figure A-34.

It may be seen from the orbit geometry that during the science measurement

phases the HGA tracking will consist of rotation of the dish about the pitch

axis at 1 rev per orbit, with a roll-yaw offset angle which varies slowly from

day to day. The roll-yaw, offset angle, measured with respect to the orbit

normal, may be referred to as the antenna offset angle. Figure A-35 shows

that the antenna offset angle changes almost ;linearly between approximately
155° and 125 ° during the drift phase of the reference mission. This excur3ion
i's—Athin the range encountered during the mapping phase, and is compatible

with the proposed two axis gimballed pointing control of the HGA described in

Section A8.

During the drift phase, as much science data as possible will be collected and

transmitted back to Earth. The GRS and MAG booms will probably be re-deployed

for science measurements and may then be retracted for the inclination change

maneuver.

The start of the reference MGCO mission occurs in the year of the solar

maximum, i . e., 1991. The predicted orbit decay due to drag during the
mission, therefore, is currently of significant concern. Even assuming the

highest elevated Martian atmospheric densities thought possible, however, it

is unlikely that orbit maintenance maneuvers will be necessary during the

59-day drift phase. It is more likely that the orbital decay occuring during
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the drift phase will be,counteracted by the maneuver performed to also achieve

the mappinq orbit. In any case, redundant sets of small thrusters (probably

ti20N thrust level) will probably be included in the bipropellant propulsion

system. These thrusters could be located to act parallel/antiparallel to the

orbit velocity vector in the operational orientation of th-e spacecraft, to

perform orbit maintenance maneuvers. The orbit maintenance maneuvers are pre-

dicted to involve AV 'increments of ti18m/s and will certainly be necessary

during the mapping phase, as described in section A8'. These thrusters may

also be used for the TCMs during the cruise phase. Thus, reorientations of

the spacecraft for orbit maintenance maneuvers during the science measurement

phases- would be obviated. Preliminary considerations indicate that this is a

viable and attractive approach to orbit maintenance. Further analysis will be

performed in the next phase of the study.

1z _.

Science duty-cycling is likely to be imposed during the drift phase because of

aforementioned adverse arrival conditions, and will be used to restrict low to

mid latitude coverage and to focus available capabilities on those polar

regions which will not be sensed in the later mapping phase of the reference

mission.
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A8. MAPPING PHASE

At the end of the 59-day drift phase, the instrument booms will be retracted

and the spacecraft will be reoriented for a plane change maneuver to achieve

an inclination of 92.87° and nominal Sun synchronism. The o'clock position of

the ascending node of the resultant initial mapping orbit for the reference

mission is nominally 0200 hours. The orbit will be nominally circular at

350 km altitude.

The four main 490N thrust biopropellant engines will probably be used to

produce the velocity change involved in this maneuver. The impulsive AV

requirement for the reference mission would be 164 m/s. The "finite burn"	 F

penalty for this maneuver has been calculated at 3.3 m /r., and a further

penalty of 1.2 m/s due to performance dispersions may be expected. The

estimated total AV requirement for this maneuver by the TIROS-based MGCO

spacecraft, therefore, is 168.5 m/s. Table C-2 indicates that this maneuver

involves the expenditure of approximately 53 kg of propellant and hydrazine,

for the maximum TOS capauility spacecraft.

E	 The maximum acceleration level, with all four thrusters firing, is approxi-

mately O.lg, which is survivable by the fully deployed solar array for this 	 i

i
thrust orientation.

`t

Considerations of thrust control, attitude determination and control, power

<f management, thermal control and communications for this maneuver are similar

to those discussed in section A6 for the MOI maneuvers. This maneuver will

involve a single burn only. Following the inclination-change maneuver, the

spacecraft will be reoriented for its operational mode, and the booms will be 	 i

redeployed.

l
Figures A-25 through A-29 show the spatial relationships 'between Mars, the

Earth and the Sun through the extended mapping phase and have been discussed

in Section A7. As discussed therein, the conjunction of Mars that will occur

approximately 20 days after achievement of the mapping orbit will force a

temporary shut down of communications, for a period up to three weeks. The

next conjunction will occur one synodic period (i.e. 2 years and 2 months)

^'	 r
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later, in the extended mapping phase of the reference mission, as shown in

Figures A-28 and A-29.

The time development of the orbit Sun angle for the mapping orbit is shown in

Figure A-36).	 This variation will be tracked by the proposed two-axis solar

array drive, to ensure maximum solar power.	 Figure A-37 shows that the length
x

of time in solar eclipse per orbit will always be within two minutes of 40

minutes.	 On the other hand, Figure A-38 shows that the time of Earth occulta-

tion by Mars per orbit will be approximately 42 minutes for periods of approxi-

mately 500 days, interspersed by periods of approximately 50 days when there

will be no Earth occultation.	 The first period of no Earth occultation con-

' cides with the period of minimum Mars-Earth range shown in Figure A-27; i.e.,

higher data-rate communications are favored at this time for given fixed

communication system characteristics, though the peaking solar range at this

time, shown in Figure A-26, limits the benefit.	 A detailed analysis of data

4
retrieval capabilities throughout the orbital phases of the mission will be

performed in the next study phase.-

.11

1

41,,

Although the mapping orbit is referred to as being Sun synchronous, the

variation of the speed of Mars in its significantly elliptical orbit will	 t

cause the MGCO orbit to wander cyclically in Martian local time. 	 As shown in

Figure A-39 the corresponding angular range of'the nodal positions will be

approximately 22°, corresponding to N1.5 hours in load time. 	 The initial

ascending node position will first drift to the late extreme at approximately

0210 hours after approximately 100 days and then move towards its Early extreme 	 4

at approximately 0040 hours after approximately another 250 days, etc.
1

' The antenna offset angle cycles between approximately 65° and 160 ° during the	 I

mapping phase, as shown in Figure A-40.	 The HGA tracking will consist of
4

-rotation of the HGA about the pitch axis at 1' rev per orbit, with the antenna

offset angle ( cf. the discussion is section A7) varying only slowly from day

to day, as described in section A7. 	 Occultation of the Earth by Mars will
l

..« occur for those HGA pointing directions at angles greater than til 5° away

from the zenith.	 With this knowledge, the spacecraft configuration will be

developed to ensure that advantage may be taken of all opportunities for the

HGA to see the Earth during the mapping phase, without obstruction by other
'e

parts of the spacecraft.
4
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It is worth noting that a beneficial alignment of the gimbal axes for the 11GA

would be one with one gimbal axis parallel to the spacecraft roll axis, to

allow setting of the antenna offset angle, and the other gimbal axis parallel

to the pitch axis, to allow tracking of the Earth at 1 rev per orbit. With

this design, the dynamic performance requirement for the first gimbal a::is,

for offset -angle control, is very much less than that for the Earth -tracking

axis. Furthermore, should the pitch-tracking gimbal control fail, the Earth

tracking function could be duplicated by halting the 1 rpo pitch rotation of

the spacecraft, with the pitch attitude of the spacecraft held inertially to

maintairt the pointing of the HGA towards the Earth. This back -up mode would

involve the least possible disturbance to the normal operational attitude

control of the spacecraft. Of course, nadir pointing is incompatible with

this back-up mode, and science measurements would be temporarily restricted.

Orbit and altitude maintenance during the orbital phases of tke MGCO mission

will involve the counteracting of small perturbations due to the asphericity

of Mars' gravitational field associated with the third and higher harmonics in

the spherical harmonic expansion of the gravitational potential; aerodynamic
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drag; solar, lunar, and planetary gravity; solar pressure; gravity gradient

torques; RCS thrusting; etc. The spacecraft will be rotated about the pitch

axis at 1 rev per orbit in order to maintain nadir pointing. The pitch axis

itself will be precessed at an average rate of one revolution per Martian year

(687 days) in order to maintain its alignment with the normal to the Sun

synchronous orbit. These controls will be effected to the degree that the

required operational lifetime of one to two Martian years is ensured, and that

the required accuracy in pointing control of the instruments is maintained.

In the reference mission, the orbit will be allowed to decay under the

influence of the aspherical gravitational field and the aerodynamic drag until

the periapsis altitude falls to approximately 270 km. The aerodymanic drag

will increase as the periapsis altitude decreases. Around the time of solar

maximum (i.e. 1991) the 2a high exospheric temperature at Mars is predicted

to be approximately 400K, and the corresponding atmospheric density is

predicted to be 6.6 x 10-11 kg/m3 at 250 km altitude and 1.5 x 10-11

kg/m3 at 300 km altitude at the peak of the dayside bulge, i.e., at

approximately 1400 hours local time near the equator. Under the very worst

conditions, the atmospheric density at these altitudes might be five times

higher. Chauncey Uphoff, of JPL, has calculated that for a spacecraft with a

ballistic coefficient (CDA/m) equal to 0.02 m 2 /kg (where CD. is the drag

coefficient z2, A is the frontal area and m is the mass) the required orbit

maintenance AV over 700 days in this 2a high case is 50 m/s. Accordingly,

100 m/s would be required for the extended mapping phase of the reference

mission which lasts two Mars years. In the worst-case OX) atmosphere, the

corresponding required orbit maintenance AV would be five times higher, i.e.

500 m/s.-- The orbit maintenance AV requirement (impulsive) specified for the

reference extendedmission is 150 m/s. It may be recalled from Section A3,

however, that the conservative mass-margin analysis presented in appendix C

has identified a potential spacecraft growth margin of 111 kg, for the maximum

TOS capability mission' over the minimum spacecraft mass capable of performing

the reference extended mission Furthermore, recent discussions with Boeing

indicate that RCA is currently underestimating the TOS capability. Even so,

the 111 kg growth margin alone could be translated into additional propulsive

(AV) capability of 614 m/s for the on board bipropellant system.
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Circularization of a 270 x 430 km altitude orbit to 350 km altitude will

require a two burn sequence involving Vs of 18 m/s and 17 m/s. These

'

	

	 maneuvers may be performed using small biprop thrusters, e.g. 20 N thrusters,

without reorientation of the spacecraft, as discussed in section A7.
j

si
The MGCO spacecraft will be designed to operate under the aerodynamic pressure

to be expected at the lowest allowed periapsis altitude of 270 km. The

atmospheric density at 270 km altitude consistent with the 2v high dayside

bulge values given above is approximately 4.56 x 10 kg/m 3 . Under these

J

	

	 conditions, the aerodynamic pressure ( =1/2 0
2) at this altitude would be

2.7 x 10
-4
 N/m2 . For a density fives times higher, the aerodynamic

pressure would be ul.4 x 10-3 N/m2 . The effects of aerodymamic torque

will be analyzed further during the next study phase.

In the reference mission it would be possible to insert the spacecraft into a

I frozen mapping orbit, with the periapsis over the South Pole of Mars. With

the symbols a and w representing; the orbital eccentricity and argument of

periapsis respectively, it may be noted that a and w are interdependent.

For the reference mission it is possible to select an initial, frozen

mapping-orbit in a-w space, in which the periapsis will librate around the
i

South Pole of Mars. The corresponding atmospheric density at periapsis would

be lower than that for a monotonically precessing mapping orbit, since the

poles of Mars are flattened and since the dayside bulge is over the equator.

Chauncey Uphoff estimates that for this frozen orbit the value of a would

remain below 0.011 0 i.e., the periapsis would remain above approximately 310

km over 700 days. The potential use of a frozen orbit for the mapping phase

will be examined in detail in the next study phase. The great flexibility in

orbit adjustment capability afforded by the proposed on board low thrust

bipropellant propulsion system certainly makes this strategy feasible.

Since the inclination of the mapping orbit will be 92.87°, the polar caps will

r,
be inaccessible for sensing by any nadir pointing sensor with a field of view

less than approximately 6* (subtended at the center of Mars) across track. It

is intended, therefore, that the drift orbit phase of the reference mission,

in which the orbit will be precisely polar, will be used to advantage to

provide sciencecoverage of these polar regions, as discussed in Section A7.

01
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Adequate thermal control and power management during all mission phases will

be insured by both the design and operation of the spacecraft.

For the nominal mapping orbit at 350 km mean altitude, the orbital period

which is 116 minutes, there,will be 8528 orbits during the reference minimum-

duration mapping phase, which lasts one Mars year (687 days). If orbit control

were possible so that no two sensor swaths overlapped at the Martian equator,

then full equatorial coverage at the dayside node, for example, would 4e

achieved with a swath width of 2.50 km, i.e. 0.042° or 0.74 milliradians sub-

tended at the center of Mars and 0.41° or 7.1 milliradians subtended at the

nominal mapping orbit altitude of 350 km. In comparison, the narrowest fields

of view among the currently base lined nadir-pointing instruments for the MGCO

mission are 0.2° x 0.7° for the PMIRR and 0.1° x V for the UVS and the UVP;

and the inclusion of new instruments may not be ruled out at this time.

Consequently, since perfect swath control is extremely unlikely, even if

possible, the extent of global surface coverage particularly near the equator,

by sensors with such narrow swaths, remains uncertain, pending estimates from

future studies. The most practical way to achieve full global coverage may

well be to extend the mission phase as long as possible and to favor the

transmission of data taken in low latitude zones over redundant data from

overlapping swaths at higher latitudes. This question of ground coverage.is

not pertinent to atmospheric sensing. In a similar vein, though, full seasonal

climatological coverage over most surface,regions will be achieved by taking
i

measurements throughout a period of l and possibly 2 Martian year(s). Since

the range of the ascending node o'clock position in local time, from MOI

through the mapping phase will be 0400-0040 hours, the local time coverage at

low latitudes for the reference mission will be confined approximately within

the corresponding post midnight and post noon meridians. Local time coverage

at higher latitudes will be through the transition regions between these two

zones.

A9. MARS QUARANTINE

The NASA policy on planetary quarantine, as applied to the MGCO mission,

requires that all spacecraft and associated equipment must be left in orbits

that will survive the relevant expiration date of the policy, which in this

case is the end of the year 2018.

i
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Lightweight instrument hatches and covers would probably burn up before reach-
ing the surface of Mars if they were jettisoned in the circular phasing or
mapping orbit at 350 km altitude. This issue will be resolved through further
study. In the unexpected event of the ejection of hatches and covers in these
orbits not being allowed, the MOI scenario (described in Section A6} could

easily be tailored to include an intermediate orbit which is sufficiently

stable for hatch and cover ejection. This flexibility in orbit adjustment'

:. capability is afforded by the proposed on-board low-thrust bi.propellant
propulsion system, (as discussed in Section A6. 	 Otherwise the hat(-hes and

covers could feasibly be designed to be captive.

In the reference m4i'3sion, the mapping phase is terminated at the chosen end of
life by raising the spacecraft into a coplanar, nominally circular orbit at an

altitude of at least 525 km, using the on-board bipropellant propulsion system.
The specified corresponding total impulsive. AV required for a two burn

sequence to perform this orbit raising is 80 m/s, In the propulsion, summary
of Appendix C an allowance of 32.3 m/s was budgeted, in order to include

allowances for the estimated low thrust penalty and performance dispersions.

High altitude, circular orbits such as the proposed EOL parking orbit are the

longest lived. The determination of the stability of an orbit around Mars,

however, is a complicated process which must take into account several

influencing, factors. For example, the asphericity of Mars and its gravita-

tional field and also third-body effects 'ram the Sun are significant con-

tributing factors. For low orbits, atmospheric drag is important. The study

of the orbital motion of a satellite of Mars grows rapidly in complexity as

one tries to generalize the situation, since the oblateness coefficient, J2,

is twice as large as the similar coefficient for the Earth.

Researchers in the field have shown that resonant situations between ob

lateness and long-period third-body effects can occur at several orbit

inclinations. The effect of this is to cause large variations in the

periapsis altitude over short periods of time. A semi-analytic method of

predicting the variation of a Mars orbit over long periods of time has been
reported in the literature. It has been used to simulate the poropsed EOL
parking orbit, which is initially circular at 525 km altitude and 92.60

inclination, and also to simulate a potential Mars capture orbit which
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initially has a periaps s altitude of 525 km, an inclination of 92.6° and a

	

i	 period of twelve hours ( this simulation also serves as a sample potential

failure-mode analysis). The results show that these orbits do not exhibit
e

undesirable resonances.

Results of the simulations for the initik, + l c;rcular orbit at 525 km . altitude

are displayed in Figure A-41. The variations. ,Jf the semi-major axis, the

eccentricity, and the inclination remain well bounded until the year 2014 at

the earliest; and should remain so well beyond 2018. Specifically, the

r
eccentricity ranges between 0.003 and 0 . 014. There are slight high-frequency

oscillations but nothing of significance which might cause orbit decay. Based

on these simulations, it is concluded that the selected EOL parking orbit is

sufficiently stable to satisfy the NASA planetary quarantine policy require-

ments. On the other hand, elliptical orbits and circular orbits at around
a

t
300 km to 400 km altitude may decay too fast.

t".
	t	

Results of the simulations for the elliptical orbit are illustrated in Figures

A-42 and A-43. The difference between the two sets of results shown in these

	

a	 two figures is that Figure A-42 corresponds to a drag-free simulation while

	

t	 Figure A-43 correspon •'a Co the model for the atmosphere of Mars contained in

"Models of Mars Atmosphere ( 1967)", NASA Space Vehicle Design Criteria
.Y

t,
(Environment), NASA SP-8011, December 1968, which may be considered to repre -

	

r	 sent the extreme, worst case. Figure A-43 indicates that this elliptical Mars

orbit may not be stable until 2019, or may be only marginally stable. A more

appropriate simulation in a follow-on MGCO study would clear this matter up,
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ATTITUDE CONTROL SYSTEM OVERVIEW

B1. ATTITUDE CONTROL SYSTEM OVERVIEW

The baseline for the Attitude Determination and Control Subsystem (ADACS) is a

zero momentum, four reaction wheel system using pressurized helium thrusters

for momentum desaturation. Attitude control during thrusting maneuvers is

provided by off-modulation of the four 100 pound bi-prop thrusters. Attitude

reference measurements are provided by star sensors, a scanning horizon sensor,

a 4n steradian Sun sensor assembly, and an inertial measurement unit. The

functional requirements of the ADACS are summarized in Table B-1. The ADACS

orients the spacecraft inertially during the cruise phase to provide illumina-

tion of the partially deployed solar array and points the high gain antenna

(HGA) towards the earth to provide a secure high data rate communications

link. The ADACS also points the spacecraft to commanded inertial orientations

during trajectory correction maneuvers, Mars Orbit Insertion (MOI), and plane

change maneuvers. The spacecraft is nadir-oriented during both the phasing

orbit and mapping orbit. An autonomous solar re-acquisition capability to a

safe-hold mode is provided to insure the safety of the spacecraft in the event

that attitude lock is ever lost. The primary difference in hardware between

the ADACS for the MGCO mission and the DMSP mission (as presented by the Block

5D-3 design) is that the MGCO system uses an additional star sensor during the

cruise phase otherwise the systems are functionally equivalent as shown in

Table B-2o Much of the ADACS software developed for the TIROS/DMSP spacecraft

is transferable to the MGCO system. A simplified block diagram of the ADACS

is shown in Figure B-1 and an irquivalent summary is given in Table B-3.

The most significant attitude control system requirements are those imposed by

the Pressure Modulated Infrared Radiometer (PMIRR) during the mapping orbit

chase. The three signal pointing requirements (control/knowledge) in milli

radians about each axis are as follows:

Axis	 Control Knowledge (mradians)

Roll ( X-Axis)	 3/2

Pitch ( Y-Axis)	 9/2

Yaw ( Z -Axis)	 3/2
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TABLE B-1. ADACS FUNCTIONAL REQUIREMENTS FOR MGCO MISSION

Mission Phase Required Functions

Launch All functions provided by STS/TOS.

Cruise Control orientation of s/c to satisfy
power/thermal constraints and open-
loop pointing of HGA to earth.	 Reorient
s/c to ground commanded inertial
orientations for bi-prop motor firings.

Phasing Orbit/ Three axis nadir orientation s/c
Mapping Orbit with solar array illuminated by the sun

and HGA pointed at earth.	 Re-orient
s/c to ground commanded orientations
for orbit adjust maneuvers.

Fail-Safe Control orientation of s/c to satisfy
emergency power/thermal/communications
constraints.

TABLE B-2. FUNCTIONAL COMPARISON OF ADACS FOR MGCO AND DMS P

i

i•

n ,.
oZ

7
t ^

ih
^f

MGCO DMSP

One revolution/120 minutes One revolution/100 minutes
within 0.1 0 pointing accuracy within 0.1° pointing accuracy
with inertial/celestial with inertial/celestial
reference. reference.

Maintenance of pitch axis to Maintenance of pitch axis to
sun-synchronous orbit normal sun-synchronous orbit normal
(one revolution/martian year). (one revolution/earth year).

Inertial orientation and Inertial orientation and
control during bi-prop AV control during hydrazine AV
maneuvers. maneuvers.

Open-loop pointing of appendages Open-loop pointing of appendage
(solar array and HGA). (solar array).

Backup nadir oriented ACS:Backup nadir oriented ACS:
Estimated accuracy of 0.25° 5D-2 demonstrated accuracy of

using conical scan H/S. 0.12° using radiation balance
H/S,	 5D-3 predicted accuracy
of 0.20° using conical scan H/S.

Momentum dumping (helium system) Momentum dumping (magnetic system
with backup nitrogen system).

B-2



Representative Heritage on
Equipment Supplier Weight Power RCA Programs

Inertial Measurement Honeywell 23 LB 41.6- 5D-2
Unit 5.6OW

Conical Scan Horizon Barnes 15-LB 12W SAATN, 5D-3
Sensor

4n SR Sun Sensor Adcole 3.5 LB 0.75W SAATN, 5D-3

Star Tracker Ball 17 LB 18W NASA Standard

Reaction Wheel Ballµ 4	 LB 12W (Max) TIROS/5D-2
Assembly 3W (Avg)

Celestial Sensor Honeywell 7.4 LB 1.5N 5D-2
Assembly
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Figure B-1.	 Block Diagram of ADACS
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B2. CRUISE CONTROL MODE

During the cruise phase of the mission, from Transfer Orbit Stage (TOS)

separation to MOI, the spacecraft is inertially oriented to satisfy power,

thermal, and communications requirements. The nominal orientation of the

spacecraft is with the -Z (yaw) axis canted off from the sunline at a com-

manded angle to balance power and thermal loads, and with the rotation angle

about the sunline commanded to insure appropriate star sensor and HGA viewing

geometries. The measurements required for attitude determination are provided

by the sun sensor assembly, star tracker, and IMU. Attitude control is

achieved by varying the speed of the reaction wheels in response to inertial

attitude error signals. Momentum denaturation is accomplished autonomously by

pulsing the helium thrusters in response to reaction wheel tachometer signals.

Ground command of the helium thrusters is also possible in order to achieve

manual momentum desaturation or to speed up reorientation maneuvers.

B3. VELOCITY CONTROL MODE

x
r^

fir

Changes in the velocity of the spacecraft are required for mid-course

correction during cruise, Mars Orbit Insertion and circularization, plane

change maneuvers, orbit adjust maneuvers, and boost to the quarantine orbit at

the end of the mission. The velocity changes are accomplished using the four

100 pound bi-prop thrusters with the duration, inertial orientation, and

velocity magnitude being commanded from the earth. The inertial attitude

sensors, star tracker, and IMU used during cruise control also provide the 	 j

attitude reference during the velocity control mode. Prior to ignition,

attitude; control about the thrust axis to +1.0 degree is providedby the

helium thrusters, which are fired in couples. Attitude control about the two

transverse axes to +0.2 degree is achieved by off-modulation of the bi-prop

thrusters. Burn duration is controlled by a velocity metering system. which

employs an integrating accelerometer backed tip by a burn duration timer which 	 {

is set by ground command. The accelerometer is the Sunstrand Q-flex and is
1.

included as part of the TIROS/DMSP IMU with the integration being performed

outside the IMU. This is functionally equivalent to that of the hydrazine

trim burn attitude control system employed on TIROS-N/ATN and DMSP Block 5D-2.

i.
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B4. PRIMARY ON-ORBIT-CONTROL MODE

The primary control mode used during the phasing and mapping orbits is derived

from the Primary Attitude Determination and Control System (PADACS) used on

DMSP. This system generates the spacecraft attitude with respect to an

orbital reference frame based upon inertial attitude measurements provided by

the celestial sensor assembly and the IMU and a stored projected ephemeris.

The ground generated ephemerides are computed from RF tracking and uplanked to

the spacecraft approximately on the order of twice per week. Based upon DMSP

experience, it is anticipated that the dominant error source in the attitude

determination will be inaccuracies in the ephemeris. In-track and cross-track

accuracies of the Mars Oribt of 7.36 kilometers will be required to insure

attitude determination accuracy of 0.1 degree with respect to the orbital

reference frame. The attitude determination accuracy scales nearly linearly

with orbit determination accuracydown to approximately one kilometer. Below

that level other error sources such as instrument errors and alignment errors

need to be considered. Attitude control during PADACS operation is accom-

plished by varying the speed of the reaction wheels. Momentum desaturation is

achieved by firing the helium thrusters.

B5. BACKUP ON-ORBIT' CONTROL MODE

The backup attitude control mode used during the phasing and mapping orbits is

derived from the backup attitude determination and control system used on DMSP

Block 5D-2 and TIROS. It is identical with the proposed DMSP Block 5D-3

system since it also uses a conical scan horizon sensor for nadir: oriented

attitude determination. Yaw attitude is derived by gyrocompassing. BADACS

will be used for initial acquisition to the orbital reference frame orienta-

tion and is a backup in the event of a failure in the primary system. It is

estimated that the accuracy of the Martian BADACS system will be approximately

0.25 degree due to the uncertainty of the 'CO 2 defined horizon. Detailed

analyses of the predicted radiance variations of the Martian atmosphere will

be required in order to refine this estimate during the next phase of the

ils
study. Attitude control and momentum desaturation are achieved in the same

manner for BADACS as for PADACS.

t.
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B6. FAIT, SAFE CONTROL MODE

This sun oriented control mode is derived from the sun-safe mode proposed for

DMSP Block 5D-3. This mode can be entered automatically at any time during

the mission in order to provide a safe attitude that will insure solar power,

adequate thermal control, and the opportunity to communicate with the earth.

Five sensor heads provide full spherical coverage to determine the position of

the sun to 0.25 degree accuracy. Gyros are used to provide rate damping and

to control the spacecraft rate about the sun line to a predetermined value.

Control torques are provided by the helium thrusters. The solar array and

high gain antenna are commanded to selected reference positions upon entry

into the fail-safe mode. The reaction wheels and the bi-prop thrusters are

disabled during this mode. Rotation about the sunline can be stopped

automatically either through receipt of a DSN signal by the HGA or by

acquisition of a desired star by the celestial sensors. A wide variety of

timed HGA search patterns can be implemented within this mode if future

studies establish a requirement for them.

l
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	 APPENDIX C

r„	 PROPULSION SUBSYSTEM

Cl. PROPULSION SUBSYSTEM

The MGCO propulsion subsystem comprises the hardware and propellant to perform

all propulsion functions following release from the shuttle bay. This includes

insertion into the heliocentric transfer trajectory, mid-course trajectory

corrections, Mars Orbit Insertion (MOI), plane change into the Mars mapping

orbit, mapping orbit maintenance, final transfer into the quarantine orbit,

and supplementary attitude control functions. In this section, the propulsion

capability will be described for the MGCO Flight System, as defined by Figure

1.4-1 of JPL Attachment 1, Standard Mission/System Performance Requirements,

reproduced here as Figure C-1.

C2. SYSTEM DESCRIPTION

Initial injection from the 296 km altitude STS parking orbit is performed using

the TOS system, which is a commercial derivative of the IUS based on the SRM-1

solid propellant first stage motor. TOS is an autonomous stage which uses

independent battery power, avionics and a reaction control system to provide

3-axis stabilization during the one-half to one orbit from STS tclease until

TOS firing, and thrust vector control during the injection burn. Important

motor characteristics include a maximum propellant load of 9705 kg and an

effective specific impulse of 291.9 seconds. Following the injection burn,

both the TOS and its adapter are separated from the MGCO Insertion System.

All propulsion functions following injection are performed with a pressure

regulated, liquid bipropellant system using N 204 and MMH as propellants.	 l

w	 With reference to the schematic diagram shown in Figure C-2, helium is used as

r the system pressurant, as well as the supply for redundant sets of eight

Reaction Control Subsystem (RCS) thrusters. These 8.9 N thrust helium engines

provide impulse bits for spacecraft alignment before major burns, for roll 	 }

control and back-up pitch and yaw control during the burns, for rapid

orientation maneuvers, and for momentum unloading throughout the mission.

_C-1	 I
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Primary thrust is generated by four, 490 N thrust Marquardt Model R-4J engines

with a specific impulse of 31,2 seconds at a mixture ratio of 1.65. This

flight qualified engine has been selected for feeveral programs (LEASAT, L-SAT

and INTELSAT VI) and has performed to specifications on INSAT, launched in

1982. On MGCO, the four engines are arranged in two opposing sets of two. Irt

normal operation, the engines are off-pulsed to provide pitch and yaw control,

with the RCS thrusters used for roll control about the thrust axis. In the

event of an engine 'malfunction, one pair of engines is disabled, with the RCS

thrusters providing back-up attitude controi.

Two regulators are used in this system.	 The principal thrust regulator is fed
j

through parallel sets of two series connected, explosively driven valves; one

valve is normally closed, the other normally open. 	 This arrangement allows

the regulator to be isolates' during extended periods when leakage and regulator
s .

drift could be a problem, e.g., during heliocentric crui:nn and the 59 day phas-

tw ing orbit period.	 Following the.final plane change maneuver- to the mapping

orbit, tt., is regulator is permanently isolated from the pressurant, and the re-

maining propulsion functions (orbit maintenance and transfer to the quarantine

r orbit) are accomplished in the blowdown mode using the helium in the propellant
P

tanks.
y

The second regulator is used to drop the stored helium pressure to a level

compatible with the helium thrusters.	 Since impulse bits from these engines

are required on a daily basis for momey^vrum wheel unloading, this regulator is

used co^,tinuously throughout the mission. 	 Regulator drift is less important

t
in this case since impulse bit changes due to off-design pressures can be

compensateiJ, with duty cycle adjustments.

In order to preserve the natural environment on Mars, none of the components

r ^' of this liquid propulsion system will be staged during the MGCO mission.

sI j
Thus, in comparing this system to the JPL designed MGCO Flight System defined

m in Figure C-1, the present liquid system includes the Mars Orbit Insertion

Stage, MOI Stage Adapter and the portion of the spacecraft mass which is

attributed to burns for achievement of the phasing orbit, orbit maintenance

Pq and quarantine orbit.	 These portions will be identified in mass breakouts

presented later in this section.
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C3. CAPABILITY

The capability of the above system to perform the MGCO mission was established

after various characteristics of the TOS and the bipropellant propulsion stage

were evaluated. These have led to the following assumptions in the propulsion

system assessment.

• TOS burn-out stage mass of 1224 kg
• TOS adapter mass of 100 kg

Helium mass of 4 kg for all helium thruster functions, including an ample
contingency allowance
Total low thrust AV penalty of 105 m/s

• An estimated AV allowance of 28 m/s for thruster and injec+- 4 on dispersions

The low thrust AV penalty assumes two burns during MOI. The first of these

achieves capture by Mars, leaving the spacecraft in a highly elliptical orbit,

and the second circularizes this initial orbit at the desired 350 km altitude.

This represents a substantial improvement over the penalty incurred for a sin-

gle burn (about 175 m/s), but is still greater than that associated with a

larger number of burns. Further study is required to identify the optimum

burn schedule for the MOI maneuvers.

Multiple burn capability offers a further advantage. In the event of an en-

gine malfunction during MOI, which in effect halves the thrust due to the

necessity to shut down the opposite thruster, the burn schedule can be altered

immediately to include a larger number of burns, thereby avoiding an increased

AV penalty. For example, initial examination of this failure mode has shown

that a four-burn sequence can maintain the AV penalty below the 100 m/s for

the case of two engines out at the beginning of MO,I

Propulsion system capability for the MGCO mission,: including the low thrust

penalty and contingency allowances, is shown in Figure-C-3, where useful

spacecraft mass is plotted against TOS throw mass. Here, useful spacecraft

mass is defined as end-of-life mass minus all propulsion hardware;, residual

propellant and pressurant. Hence, useful spacecraft mass represents the total

non-propulsion related mass available to accomplish the mission objectives.

Figure C-3 employs worst-case assumptions for required heliocentric injection

tr_'
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velocity and arrival hyperbolic excess velocity at Mars, even though these

maxima occur at opposite extremes of the launch window. This introduces some

u
	 conservatism, as for example in an early launch which requires the total

planned TOS propellant while leaving an additional liquid propellant margin at

Mars. Conversely, a late launch allows some on-loading of liquid propellant
4	

(consistent with tank capacity) in order to decrease the TOS injection

velocity to the required value.

For the TIROS-N spacecraft considered for this mission, the minimum useful

spacecraft mass that fulfills all the mission objectives is 500 kg. This

spacecraft contains the full 80 kg instrument package, has ample propellant

for the extended mapping mission, and has sufficient propellant margin and

redundancy to guarantee mission success. Figure C-3 shows that this corres-

ponds to a 1755 kg throw mass which implies that the TOS is off-loaded by

approximately 10%.

Alternatively, the propellant load in the TOS can be increased up to the fully

loaded condition, with the extra MGCO insertion system mass used for growth or

"excess" capability. The extra capability can accommodate a heavier comple-

ment of instruments on the next larger spacecraft in the TIROS family, or it

can be used to increase the liquid propellant load with the same spacecraft to

provide even greater margins and extended life. Figure C-3 shows that the

maximum useful spacecraft mass can be increased by greater than 20% to 611 kg.

Table C-1 compares propulsion masses for the baseline 500 kg case and a max-

imum throw mass case where the added.capability is concentrated only on

greater instrumentation mass. Since analysis shows that the change in AV

penalty is insignificant for this larger spacecraft using the same thrust

level, no increase in the AV budget is assumed. The table shows that the

-	 only significant growth in propulsion subsystem mass is in the required

propellant.

Based on the assumed mission profile, a schedule of spacecraft mass at vaious
stages in the MGCO mission is shown in Table C-2.

ir
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TABLE C-1. MGCO SYSTEM MASS (kg)

Propellant

Baseline Extended Capability

1017 1217

Propulsion Hardware 127 140

Helium Pressurant 11 12

Propulsion Subsystem 1155 1369

Useful Spacecraft 500 611

Inaertion System 1655 1980

TOS Adapter 100 100

'throw Mass 1755 2080

Transfer Orbit Stage 9973 10929

Injection System 11 , 725 13,009

TABLE C-2. MGCO MISSION MASS PROFILE (kg)

Throw Mass

Baseline Extended Capability

1755 2080

Insertion System 1655 ,1980

Start MOI 1602 1916

Start Phasing Orbit 737 883

Start Mapping Mission 694 830

End Mapping Mission 653 782

EOL Mass in Quarantine 634 759

Useful Mass 500 611

i
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APPENDIX D

CONFIGURATION DISCUSSION

Dl. INTRODUCTION

The proposed MGCO spacecraft bus is based upon the TIROS and Block 5D series

of RCA spacecraft. These spacecraft have been designed to carry diverse,

complex payloads consisting of planetary and environmental sensors in Sun-

synchronous Low Earth Orbit (LEO) at any local time. They are three axis

stabilized and rotate at one revolution per orbit (rpo) about a body fixed

pitch axis. The accommodation of the MGCO payload complement in a TIROS/Block

5D design is therefore well conceived and efficient. The environment and the

corresponding operational requirements to be experienced are sufficiently

similar to those for the TIROS/Block. 5D missions that many of the TIROS/Block

5D design concepts are applicable either directly or with a similar degree of

modification as is exhibited within the family of TIROS and Block 5D

spacecraft.

Utilization of the basic designs of the RCA families of spacecraft with

body-mounted solar arrays (eeg. ) Atmosphere Explorer and Dynamics Explorer)

and three-axis stabilized geostationary communications spacecraft (e.g.,

Satcom, GSTAR, Spacenet, etc.) has been rejected after the analysis of

fundamental capabilities and requirements. It is true that the AE and DE-B

spacecraft operate in LEO, with Ditch control at one rpo since these space-

craft are momentum biased. The accommodation of the MGCO payload and mission

requirements, however, would result in a complex and tightly constrained

configuration and instrument accommodation and the problematical augmentation

of solar array area. As for the communications spacecraft, their d6 g ign is

based upon requirements in a greatly different operational and environmental

regime. For example, their basic function is to carry a narrow class of

payloads, via RF repeaters. 	 Consequently, their physical design features

Ll little versatility in the accommodation of diverse payload instruments.

Notably,	 this type of spacecraft includes a small and limited command and data

handling subsystem. Furthermore, the spacecraft subsystems, e.g., thermal and

power, are matched to the very different characteristics of High Earth Orbits

(HEO).

D-1
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Preliminary design notes on the study of science-instrument accommodation and

fields of view for the TIROS based MGCO spacecraft are included herein. The

attached figures illustrate the points made in the notes.

Figure D-1 is a simplified line drawing showing the basic features of the MGCO

spacecraft in its fully operational configuration. The acronyms in the call

outs on Figure D-1 are written out in Section D17.

Figure D-2 shows the ranges and extreme limits of the fields of view (FOVs) of

the MGCO science instruments including their coolers, superimposed on the

basic line drawing of Figure D-1. The compliance of the configuration design

with the FOV requirements specified by JPL is shown effectively. Although the

achieved compliance with the JPL specified stray radiation constraints is not

depicted explicitly, it may also be seen from a glance at Figure D-2. The

values of the angular limits of the FOVs shown in the figure are measured from

the nadir direction, which has been arbitrarily assigned 0% The 8° shown for

the MVIRS is the full angular width of the fan-like cross-track FOV.

Figure D-3 shows a representation of the solid angles throughout which the

high gain antenna (HGA) and the solar array will be required to point + during

the drift and mapping phases of the mission, superimposed on the basic line

drawing of Figure D-1. In Figure D-2, the origins of these pointing solid-

angles are located at representative, nominal pivot points of the HGA and the

solar array. Three cones emanate from each of these two origins. During the

drift and mapping phases of the Sun/Earth direction sweeps out the solid angle

which lies between those two of rbe triplet of cones whose axes of symmetry

t

	

	 are parallel to the orbit normal. Whenever the Sun /Earth direction passes
-through Mars, however, there is occultation and this part of the pointing

:'	 r	 solid angle is useless for power /communications. The occultation cones are
a.:	 symmetrical about the nadir; their half angle is 65 ° measured from the nadir.

Figure D-4 shows the FOVs of the attitude determination sensors, superimposed
on the basic line drawing of Figure D--l. The decision on the types and numbers

r^	 of celestial sensors to be used remains to be finalized. In these figures, a

Aa	 feasible configuration incorporating a single DMSP type celestial sensor

(Honeywell) is depicted. The inclusion of another celestial sensor has little

k.
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impact on this ,instrument accommodation and FOVs study. The baffle tube of a

second celestial sensor would project out of the cold end-face of the

Equipment Support Module (ESM) in a similar way to the one shown. The cane

angle of the FOV of the conical scanning horizon sensors (CSSs) remains TBD,

but is shown herein as 90° (full cone) as in the CSSs proposed for SAATN and

5D-3. The final selection of this cone angle will probably slightly chan3e

the final design choice for the orientation of the MAG and GRS booms from that

depicted in Figure D-4 1 so that these booms are outside the FOVs of the CSSs

as well as the HGA and the other sensors. Only three of the five sensor heads

of the 41r steradian sun sensor, and their FOVs, are shown in these figures.

The head on the -Z side of the propulsion module and the head on the -X aide

of the propulsion module cannot be seen in this perspective view.

D2. GENERAL

• All science instruments mounted to bottom panel of ESM ( pallet)

- Allows physical integration and operational simulations to be
performed at JPL from bus.

- Attitude of pallet determined and controlled by spacecraft ADACS.

• Sign Convention

+X Nominal direction of flight (down track)
+Y Orbit anti -normal ( -Y, positive orbit normal, determined from

orbital velocity by right hand screw rule).
+Z	 Local vertical towards nadir.

4
r,

D3. GRS

• Boom at an angle of upto ti65 ° from nadir
Boom and GRS outside FOVs of other instruments and useful FOV of HGA

Boom may be canted towards the orbit anti -normal (RSS end ` of bus) in
order to avoid the FOVs of the conical scanning horizon sensors (CSSs)
and the stray light constraint zones of the other instruments.

• FOV and stray radiation requirements satisfied.

• Since RA is best placed at +Y end of pallet and PMIRR and MVIRS are best
placed at -Y end of pallet, the GRS and MAG booms will probably be mounted
along the +X and -X edges of the pallet.

e Separate booms will be assumed for the GRS and MAG unless these instruments

can be shown to be non mutually interfering when in close proximity to each
other.

i ;	
I.

^'	 1
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• Boom locks in fully extended position with 27r Steradian FOV of GRS cen-
tered on nadir and FOV of GRS cooler (approximately 2ff Steradians) c.,,ntered
on positive orbit normal (towards cold space).

• Boom may be partially deployed and may be retracted.

• Boom selection	 TBD

- Astromast	 Shown in Figure D-1

- Astromast	 Clock angle and extension difficult to ascertain in
partially deploy-d condition

D4. MVIRS

• Located at -Y end of pallet

- Cooler has clear view of cold space (approximately 27 Steradians)

• FOV and stray radiation requirements satisfied.

D5. PMIRR

e Located at -Y end of pallet

- Cooler has clear view of c-ld space (approximately 2 ,R Steradians)
- Location towards -Y +X cor- or of pallet may be preferable to accom-
modate view 10 P down track

- Inscrument has clear view up to and beyond (the specified) 30* above

one cross-track limb

FOV and stray radiation requirements satisfied.

D 6. RA

Located with center approximately on +Y edge of pallet, so that half of the
J	 dish is under the propulsion module.

Location with center in +X +Y corner or -X +Y corner would minimize

use of pallet mounting area.

e . FOV and stray radiation requirements satisfied.

D7. UVS

* Location on +X edge of pallet may favor iriew of down-track limb (same limb
as viewed by UVP).

e FOV and stray radiation requirements Ratisfied.

fr
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D8. UVP

• Mounted to hang over +X edge of pallet

Allows FOV between zenith, nadir and down-track limb

• FOV requirements satisfied

o By locating UVP sensor head far enough out beyond +X edge of pallet, the
specified 30° (half angle) stray radiation requirement can be satisfied.
Other approaches to satisfying this stray radiation requirement might be to
include an entrance baffle up the side of the ESM, or to select surface
finishes for the adjacent side of the ESM so that the stray radiation level
is acceptable.

• The current design for the configuration and size of the HGA results in

occasional interference with the FOV of the UVP to a level acceptable to
JPL. This issue will be studied further. The UVP is the only instrument
whose operation is compromised in the current baseline design.

D 9. MAG

• See comments in Section D3.

• No special requirement on orientation of MAG at end of boom.

D10. SOLAR ARRAY

•	 Solar panels held folded around louvered panels of ESM through launch phase.

•	 Within minutes of TOS burnout and separation, solar panels deployed into
( planar array in X-Y plane with solar cells facing G direction.	 Boom still

held along apex of ESM.	 Spacecraft attitude controlled so that solar array
plane is perpendicular to Sun line.

•	 Following Mars Orbit Insertion (MOI) solar array boom deployed along +Y
axis.	 Solar array boom rotation and solar array cant angle controlled so
that solar array plane is perpendicular to Sun line.

•	 Current baseline mission design involves plane change maneuvers (for

achievement of Sun synchronism) and orbit maintenance maneuvers to be
performed with solar array and boom in fully deployed configuration andr
with plane of solar array parallel to Y axis.	 Thrust level and location

v of thrusters for these maneuvers TBD. 	 Probable reconfiguration of HGA and

boom from that shown herein`.

• Angular range of rotation of solar array boom necessitated by mission re
quirements is less than 360°, due to occultation of Sun by Mars when Sun
direction is closer than 65° to nadir, which occurs for part of every orbit

do to during drift and mapping phases.

3	 • Solar array cant, angle controllable between zero (launc'_; and cruise phases)

and approximately 53° (corresponding to maximum angle between Sun line and
positive orbit normal of 143° during operational phases).

,u



• Baffle tube of celestial sensor shown external to dog house. Optics,
sensor heads and electronics may be located inside ESM, possibly mounted on
internal face of pallet, in order to minimize relative motions of celestial
sensor and science instruments.

D13. CONICAL SCANNING HORIZON SENSORS

• Located one fore and one aft, on brackets next to coolers for PMIRR and
MVIRS at cold end of ESM.

u	
• Similar sensors proposed for DMSP Block 5D-3 and NOAA SAATN manufactured by

Barnes Engineering Co. and Ithaco Inc.

• Rotation of prism or other entrance optics causes FOV (ti3°) to cone at
approximately 4 revs/sec. The half-cone angle for the proposed Block 5D-3
and SAATN Earth orbiters is 45°. The half-cone angle for the MGCO mission
is TBD.

• Center lines of cones lie in X-Z plane, depressed by TBD° from X axis.

• GRS and MAG booms may be canted towards -Y in order to avoid FOVs of
conical scan sensors (this is not shown in Figure D-1) as well as being
depressed below X-Y plane towards +Z in order not to obstruct HGA
pointing. Otherwise conical scan sensors electronics would gate detected
signal in order to reject effect of FOV interference by GRS and MAC booms.

D14. 41T STERADIAN SUN SENSOR

• Employs five sensor heads, each with a 128 0 conical FOV.
a

• Three heads located on "Equator" of spacecraft (X-Y plane) with centers of
FOVs 120° apart. One head on top of spacecraft, with FOV centered on -Z
axis. One head on bottom of spacecraft, with FOV centered on +Z axis.

t - 2 equatorial heads and the -Z head mounted on reaction control equipment
support structure (RSS). Third equatorial head mounted on cold end face

'- of ESM.	 +Z head mounted on RSS near battery charge electronics (BTX).

•	 Head on -Z and -X sides of spacecraft is not visible in Figure D-4.h _

D15.	 PROPULSION MODULE

The configuration for the propulsion module has not been finalized.
^i

The possible changes that may be made to the configuration.shown in Figures

Y
D -1 through D-4, attached figures, however, will not impact the science

• instrument accommodation and fields of view study presented herein.



The tankage of the configuration shown consists of two 42 —inch diameter
	 X.^;.

•„

	

	 bipropellant tanks along the Y axis, with four 20 —inch diameter helium tanks

nestled symmetrically between them. As in the SAATN and Block 5D-9-spacecraft

designs there are four rocket engine assemblies (REAs) spaced at 90° intervals

'

	

	 around the end ring of the reaction control equipment support structure

(RSS). The 16 helium engine assemblies (HEAs) are nominally co —located with

the REAs in eight redundant pairs with their lines of action passing through

the adjacent REAs.

D16. BATTERIES

The configuration discussed includes two batteries. Each battery consists of

two boxes, and therefore there are four battery boxes. Only three of these

battery boxes shown are visible in the perspective view. The battery boxes

are mounted externally to the RSS in the TIROS and Block 5D designs, in

accordance with considerations of volume and thermal control. The panels of

vane louvers on the battery boxes have a clear view of cold space (centered on

the —Y direction) during the drift and mapping phases of the mission, as do

all the other coolers in the MGCO spacecraft design.

D17. GLOSSARY

ADACS	 Attitude Determination and Control Subsystem

r	 BIPRO P	 Bi-propellant

4	 BTX	 Battery Charge Electronics

CSA	 Celestial Sensor Assembly

CSS	 Conical Scanning Horizon Sensor

if 	 DMSP	 Defense Meteorological Satellite Program

ESM* 	 Equipment Support Module

1
 1"

10"
*NOTE: The ESM is the main equipment Module with a pentagonal cross section,

which contains most of the electronics, recor ders, , etc. on the TIROS series of

spacecraft.

All of the science instruments are mo ,lnted on the MARS facing panel of this

module, except for those mounted on booms. 	 p

t
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FO Field of View

GRS Gamma Ray Spectrometer

He Helium

HEA helium Engine Assembly

HEO High Earth Orbit

HGA High Gain Antenna

LEO Low Earth Orbit

MAG Magnetometer

MGCO Mars Geoscience and Climatology Orbiter

MVIRS Mapping Visible and Infrared Spectrometer

NOAA National Oceanic and Atmospheric Administration

3j
PMIRR Pressure Modulated Infrared Radiometer

RA Radar Altimeter

REA Rocket Engine Assembly

RF Radio Frequency

=f RSS Reaction Control Equipment Support Structure {

SAATN STS/Atlas Advanced TIROS-N
4

SAD Solar Array Drive

1
TBD To Be Determined

TOS Transfer Orbit Stage i

C
UVP Ultraviolet Photometer

I

UVS Ultraviolet Spectrometer
j

f

Ir

t	 !
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