7 research outputs found

    ANTIVIRAL PROPERTIES OF MICROALGAE AND CYANOBACTERIA

    Get PDF
    The recent outbreak of Corona Virus Disease (COVID-19) and the surge in accelerating the development of a vaccine to fight against the SARS-CoV-2 virus has imposed greater challenges to humanity worldwide. There is lack of research into the production of effective vaccines and methods of treatment against viral infections. As of now, strategies encompassing antiviral drugs and corticosteroids alongside mechanical respiratory treatment are in practice as frontline treatments. Though studies have reported that microalgae possess antiviral properties, only a few cases have presented the existence of antiviral compounds such as algal polysaccharides, lectins, aggluttinins, scytovirin, algal lipids such as sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerides (MGDG) and digalactosyldiacylglycerides (DGDG), and algal biopigments especially chlorophyll analogues, marennine, phycobiliproteins, phycocyanin, phycoerythrin and allophycocyanin that are derived from marine and freshwater microalgae. Given the chemodiversity of bioactive compounds from microalgae and the present scenario, algal biotechnology is seen as a prospective source of antiviral and anti-inflammatory compounds that can be used to develop antiviral agents. Microalgae with potential as antivirals and microalgae derived functional compounds to treat viral diseases are summarized and can be used as a reference in developing algae-derived antivirals to treat SARS-CoV-2 and other similar viruses
    corecore