36 research outputs found

    CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: Heat transfer and entropy generation analyses

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ijmecsci.2018.08.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The behavior of water–Al2O3 nanofluid inside the three-dimensional horizontal concentric annulus is investigated by the two-phase mixture procedure regarding the first and second laws of thermodynamics. The annulus walls are subjected to constant temperature boundary condition. Heat transfer and entropy generation rates, nanoparticle distribution, skin friction coefficient, and temperature distribution are evaluated at different concentrations and Reynolds numbers. The results show that nanoparticle concentration at the bottom of annulus and the upper side of inner cylinder is greater than other regions. In addition, the heat transfer and thermal entropy generation rates increase with increment of concentration and Reynolds number. Moreover, the lowest and highest thermal entropy generation rates happen in the annulus central part and near the walls, respectively. Bejan number is very close to 1 at all cases under study, which shows the dominance of thermal entropy generation

    Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor — Computational approach

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/ j.mvr.2019.01.005. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The solute transport distribution in a tumor is an important criterion in the evaluation of the cancer treatment efficacy. The fraction of killed cells after each treatment can quantify the therapeutic effect and plays as a helpful tool to evaluate the chemotherapy treatment schedules. In the present study, an image-based spatio-temporal computational model of a solid tumor is provided for calculation of interstitial fluid flow and solute transport. Current model incorporates heterogeneous microvasculature for angiogenesis instead of synthetic mathematical modeling. In this modeling process, a comprehensive model according to Convection-Diffusion-Reaction (CDR) equations is employed due to its high accuracy for simulating the binding and the uptake of the drug by tumor cells. Based on the velocity and the pressure distribution, transient distribution of the different drug concentrations (free, bound, and internalized) is calculated. Then, the fraction of killed cells is obtained according to the internalized concentration. Results indicate the dependence of the drug distribution on both time and space, as well as the microvasculature density. Free and bound drug concentration have the same trend over time, whereas, internalized and total drug concentration increases over time and reaches a constant value. The highest amount of concentration occurred in the tumor region due to the higher permeability of the blood vessels. Moreover, the fraction of killed cells is approximately 78.87% and 24.94% after treatment with doxorubicin for cancerous and normal tissues, respectively. In general, the presented methodology may be applied in the field of personalized medicine to optimize patient-specific treatments. Also, such image-based modeling of solid tumors can be used in laboratories that working on drug delivery and evaluating new drugs before using them for any in vivo or clinical studies

    Towards principled design of cancer nanomedicine to accelerate clinical translation

    Get PDF
    Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field

    A comprehensive study of geothermal heating and cooling systems

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.scs.2018.09.036� 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Geothermal heat is an energy source that is local, reliable, resilient, environmentally-friendly, and sustainable. This natural energy is produced from the heat within the earth, and has different applications, such as heating and cooling of buildings, generating electricity, providing warm/cold water for agricultural products in greenhouses, and balneological use. Geothermal energy is not dependent on weather or climate and can supply heat and electricity almost continuously throughout the year. It may even be possible to use geothermal projects as �thermal batteries�, wherein waste or collected heat is stored for future use, even seasonal use, making geothermal energy �renewable� at a time scale of years. Extensive research has been carried out on different technologies and applications of geothermal energy, but comprehensive assessment of geothermal heating and cooling systems is relevant because of changing understanding, scale of application, and technology evolution. This study presents a general overview of geothermal heating and cooling systems. We provide an introduction to energy and the environment as well as the relationship between them; a brief history of geothermal energy; a discussion of district energy systems; a review of geothermal heating and cooling systems; a survey of geothermal energy distribution systems; an overview of ground source heat pumps; and, a discussion of ground heat exchangers. Recognition and accommodation of several factors addressed and discussed in our review will enhance the design and implementation of any geothermal heating or cooling system

    Fluid Flow and Heat Transfer Analysis of a Nanofluid Containing Motile Gyrotactic Micro-Organisms Passing a Nonlinear Stretching Vertical Sheet in the Presence of a Non-Uniform Magnetic Field; Numerical Approach.

    No full text
    The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton's linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out

    Computational modeling of PET tracer distribution in solid tumors integrating microvasculature

    No full text
    Background We present computational modeling of positron emission tomography radiotracer uptake with consideration of blood flow and interstitial fluid flow, performing spatiotemporally-coupled modeling of uptake and integrating the microvasculature. In our mathematical modeling, the uptake of fluorodeoxyglucose F-18 (FDG) was simulated based on the Convection–Diffusion–Reaction equation given its high accuracy and reliability in modeling of transport phenomena. In the proposed model, blood flow and interstitial flow are solved simultaneously to calculate interstitial pressure and velocity distribution inside cancer and normal tissues. As a result, the spatiotemporal distribution of the FDG tracer is calculated based on velocity and pressure distributions in both kinds of tissues. Results Interstitial pressure has maximum value in the tumor region compared to surrounding tissue. In addition, interstitial fluid velocity is extremely low in the entire computational domain indicating that convection can be neglected without effecting results noticeably. Furthermore, our results illustrate that the total concentration of FDG in the tumor region is an order of magnitude larger than in surrounding normal tissue, due to lack of functional lymphatic drainage system and also highly-permeable microvessels in tumors. The magnitude of the free tracer and metabolized (phosphorylated) radiotracer concentrations followed very different trends over the entire time period, regardless of tissue type (tumor vs. normal). Conclusion Our spatiotemporally-coupled modeling provides helpful tools towards improved understanding and quantification of in vivo preclinical and clinical studies.Applied Science, Faculty ofMedicine, Faculty ofNon UBCBiomedical Engineering, School ofPhysics and Astronomy, Department ofRadiology, Department ofReviewedFacultyResearche

    Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor

    No full text
    Combination therapy, a treatment modality that combines two or more therapeutic methods, provides a novel pathway for cancer treatment, as it targets the region of interest (ROI) in a characteristically synergistic or additive manner. To date, liposomes are the only nano-drug delivery platforms that have been used in clinical trials. Here, we speculated that it could be promising to improve treatment efficacy and reduce side effects by intravenous administration of thermo-sensitive liposomes loaded with doxorubicin (TSL-Dox) during magnetic hyperthermia (MHT). A multi-scale computational model using the finite element method was developed to simulate both MHT and temperature-sensitive liposome (TSL) delivery to a solid tumor to obtain spatial drug concentration maps and temperature profiles. The results showed that the killing rate of MHT alone was about 15%, which increased to 50% using the suggested combination therapy. The results also revealed that this combination treatment increased the fraction of killed cells (FKCs) inside the tumor compared to conventional chemotherapy by 15% in addition to reducing side effects. Furthermore, the impacts of vessel wall pore size, the time interval between TSL delivery and MHT, and the initial dose of TSLs were also investigated. A considerable reduction in drug accumulation was observed in the tumor by decreasing the vessel wall pore size of the tumor. The results also revealed that the treatment procedure plays an essential role in the therapeutic potential of anti-cancer drugs. The results suggest that the administration of MHT can be beneficial in the TSL delivery system and that it can be employed as a guideline for upcoming preclinical studies

    Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid

    No full text
    Current investigation aims to analyze the conjugate free convection inside a porous square cavity occupied with Ag–MgO hybrid nanofluid using the local thermal non-equilibrium (LTNE) model. Hybrid nanofluids are a novel kind of enhanced working fluids, engineered with enhanced thermo-physical and chemical properties. Two solid walls located between the horizontal bounds in two sides of cavity play the role of a conductive interface between the hot and cold walls, and moreover, the top and bottom bounds have been insulated. The governing differential equations are obtained by Darcy model and then for better representation of the results, converted into a dimensionless form. The finite element method is utilized to solve the governing equations. To evaluate the correctness and accuracy of the results, comparisons have been performed between the outcomes of this work and the previously published results. The results indicate that using the hybrid nanoparticles decreases the flow strength and the heat transfer rate. The heat transfer rate augments when Rk rises and the flow strength augments when Ra grows. Enhancing the porosity increases strongly the size and strength of the vortex composed inside the porous medium. When Kr is low, the heat transfer rate is low and by increasing Kr, thermal fields become closer to each other. The effect of hybrid nanoparticles on thermal fields with the thinner solid walls is more than that the thicker ones. An increment in H eventuates the enhancement of heat transfer and hence, the thermal boundary layer thickness. By increasing the volume fraction of the hybrid nanoparticles, Nuhnf and Nus decrease in constant Ra. Besides, increase in Ra enhances the Nuhnf and Nus. For a certain d, the reduction of Nus due to using the hybrid nanoparticles is more than that for Nuhnf. The increment of d lessens Nuhnf for all values of Kr and has not specific trends for Nus. Utilizing hybrid nanoparticles decreases Nus (except d = 0.4), rises Nus when Kr 18, while it can increase Nus for Kr[42. In constant d, increment of H, respectively, decreases and boosts Nuhnf and Nus. For all values of d, increment of e declines Nuhnf. In low value of d, the increase in e reduces Nus, whereas at higher values, Nus has continuously enhancing trend. For different values of d, the increase in e scrimps Nuhnf. The increment of d and also e, and H are, respectively, decreases and increases the heat transfer rate

    Effects of <i>Ec</i> and <i>Gr/Re</i><sup><i>2</i></sup> on the dimensionless temperature.

    No full text
    <p>Effects of <i>Ec</i> and <i>Gr/Re</i><sup><i>2</i></sup> on the dimensionless temperature.</p
    corecore