194 research outputs found

    Syntenic analysis of ACCase loci and target-site-resistance mutations in cyhalofop-butyl resistant Echinochloa crus-galli var. crus-galli in Japan

    Get PDF
    BACKGROUND: Recently, suspected cyhalofop-butyl-resistant populations of allohexaploid weed Echinochloa crus-galli var. crus-galli were discovered in rice fields in Aichi Prefecture, Japan. Analyzing the target-site ACCase genes of cyhalofop-butyl helps understand the resistance mechanism. However, in E. crus-galli, the presence of multiple ACCase genes and the lack of detailed gene investigations have complicated the analysis of target-site genes. Therefore, in this study, we characterized the herbicide response of E. crus-galli lines and thoroughly characterized the ACCase genes, including the evaluation of gene mutations in the ACCase genes of each line. RESULT: Four suspected resistant lines collected from Aichi Prefecture showed varying degrees of resistance to cyhalofop-butyl and other FOP-class ACCase inhibitors but were sensitive to herbicides with other modes of action. Through genomic analysis, six ACCase loci were identified in the E. crus-galli genome. We renamed each gene based on its syntenic relationship with other ACCase genes in the Poaceae species. RNA-sequencing analysis revealed that all ACCase genes, except the pseudogenized copy ACCase2A, were transcribed at a similar level in the shoots of E. crus-galli. Mutations known to confer resistance to FOP-class herbicides, that is W1999C, W2027C/S and I2041N, were found in all resistant lines in either ACCase1A, ACCase1B or ACCase2C. CONCLUSION: In this study, we found that the E. crus-galli lines were resistant exclusively to ACCase-inhibiting herbicides, with a target-site resistance mutation in the ACCase gene. Characterization of ACCase loci in E. crus-galli provides a basis for further research on ACCase herbicide resistance in Echinochloa spp. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Efficacy and Safety of Switching Prostaglandin Analog Monotherapy to Tafluprost/Timolol Fixed-Combination Therapy

    Get PDF
    Purpose. To assess the efficacy and safety of switching from prostaglandin analog (PGA) monotherapy to tafluprost/timolol fixed-combination (Taf/Tim) therapy. Subjects and Methods. Patients with primary open-angle glaucoma, normal-tension glaucoma, or ocular hypertension who had received PGA monotherapy for at least 3 months were enrolled. Patients were examined at 1, 2, and 3 months after changing therapies. Subsequently, the patients were returned to PGA monotherapy. The examined parameters included intraocular pressure (IOP) and adverse events. A questionnaire survey was conducted after the switch to Taf/Tim therapy. Results. Forty patients with a mean age of 66.5 ± 10.3 years were enrolled; 39 of these patients completed the study protocol. Switching to Taf/Tim significantly reduced the IOP from 18.2 ± 2.6 mmHg at baseline to 14.8 ± 2.5 mmHg at 1 month, 15.2 ± 2.8 mmHg at 2 months, and 14.9 ± 2.5 mmHg at 3 months (P<0.001). Switching back to the original PGA monotherapy returned the IOP values to baseline levels. Taf/Tim reduced the pulse rate insignificantly. No significant differences were observed in blood pressure, conjunctival hyperemia, or corneal adverse events. A questionnaire showed that the introduction of Taf/Tim did not significantly influence symptoms. Conclusions. Compared with PGA monotherapy, Taf/Tim fixed-combination therapy significantly reduced IOP without severe adverse events

    Association Between Tooth Loss and Longitudinal Changes in B-Type Natriuretic Peptide Over 5 Years in Postmenopausal Women: The Nagahama Study

    Get PDF
    BACKGROUND: There is disparity between the sexes in cardiovascular diseases including heart failure (HF). This study aimed to investigate the effect of periodontal disease (PD) on plasma B-type natriuretic peptide (BNP) concentration across sex, age, and menopausal status, as well as the interaction effect of MT and diabetes mellitus (DM) on BNP. METHODS: This large-scale prospective cohort study enrolled 7, 539 individuals with no myocardial infarctions or angina pectoris at baseline from the general Japanese population. The association between baseline number of missing teeth (MT) and the longitudinal changes in BNP over 5 years (ΔBNP) was evaluated according to sex and menopausal status. RESULTS: Among 7, 539 participants, 3, 190 were postmenopausal women with a mean age ± standard deviation of 61.1 ± 7.6 at baseline. Multivariate analysis revealed a positive association between MT and ΔBNP among postmenopausal women even after adjusting for covariates, including traditional HF risk factors (coefficient, 0.210; 95% confidence interval [CI], 0.107 to 0.312; P 50. Including an interaction term (MT × DM) in the multivariate model revealed a positive interaction between MT and DM in ΔBNP among postmenopausal women (coefficient for interaction, 1.365; 95% CI, 0.902 to 1.827; P for interaction <0.001). CONCLUSIONS: Our study showed a positive association between MT and ΔBNP, as well as a positive effect of the interactive association between MT and DM, among postmenopausal women. Our results suggest a sex difference of an adverse effect of PD on initial myocardial wall stress in the ventricles

    A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma

    Get PDF
    Background: Although dendritic cell (DC) vaccines are considered to be promising treatments for advanced cancer, their production and administration is costly and labor-intensive. We developed a novel immunotherapeutic agent that links a single-chain antibody variable fragment (scFv) targeting mesothelin (MSLN), which is overexpressed on ovarian cancer and mesothelioma cells, to Mycobacterium tuberculosis (MTB) heat shock protein 70 (Hsp70), which is a potent immune activator that stimulates monocytes and DCs, enhances DC aggregation and maturation and improves cross-priming of T cells mediated by DCs. Methods: Binding of this fusion protein with MSLN on the surface of tumor cells was measured by flow cytometry and fluorescence microscopy. The therapeutic efficacy of this fusion protein was evaluated in syngeneic and orthotopic mouse models of papillary ovarian cancer and malignant mesothelioma. Mice received 4 intraperitoneal (i.p.) treatments with experimental or control proteins post i.p. injection of tumor cells. Ascites-free and overall survival time was measured. For the investigation of anti-tumor T-cell responses, a time-matched study was performed. Splenocytes were stimulated with peptides, and IFNγ- or Granzyme B- generating CD3+CD8+ T cells were detected by flow cytometry. To examine the role of CD8+ T cells in the antitumor effect, we performed in vivo CD8+ cell depletion. We further determined if the fusion protein increases DC maturation and improves antigen presentation as well as cross-presentation by DCs. Results: We demonstrated in vitro that the scFvMTBHsp70 fusion protein bound to the tumor cells used in this study through the interaction of scFv with MSLN on the surface of these cells, and induced maturation of bone marrow-derived DCs. Use of this bifunctional fusion protein in both mouse models significantly enhanced survival and slowed tumor growth while augmenting tumor-specific CD8+ T-cell dependent immune responses. We also demonstrated in vitro and in vivo that the fusion protein enhanced antigen presentation and cross-presentation by targeting tumor antigens towards DCs. Conclusions: This new cancer immunotherapy has the potential to be cost-effective and broadly applicable to tumors that overexpress mesothelin

    Near-Infrared Laser Adjuvant for Influenza Vaccine

    Get PDF
    Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants

    MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1

    Get PDF
    Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3
    corecore