123 research outputs found

    Protein interaction network of Arabidopsis thaliana female gametophyte development identifies novel proteins and relations

    Get PDF
    Although the female gametophyte in angiosperms consists of just seven cells, it has a complex biological network. In this study, female gametophyte microarray data from Arabidopsis thaliana were integrated into the Arabidopsis interactome database to generate a putative interaction map of the female gametophyte development including proteome map based on biological processes and molecular functions of proteins. Biological and functional groups as well as topological characteristics of the network were investigated by analyzing phytohormones, plant defense, cell death, transporters, regulatory factors, and hydrolases. This approach led to the prediction of critical members and bottlenecks of the network. Seventy-four and 24 upregulated genes as well as 171 and 3 downregulated genes were identified in subtracted networks based on biological processes and molecular function respectively, including novel genes such as the pathogenesis-related protein 4, ER type Ca2+ ATPase 3, dihydroflavonol reductase, and ATP disulfate isomerase. Biologically important relationships between genes, critical nodes, and new essential proteins such as AT1G26830, AT5G20850, CYP74A, AT1G42396, PR4 and MEA were found in the interactome’s network. The positions of novel genes, both upregulated and downregulated, and their relationships with biological pathways, in particular phytohormones, were highlighted in this study.Batool Hosseinpour, Vahid HajiHoseini, Rafieh Kashfi, Esmaeil Ebrahimie and Farhid Hemmatzade

    Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture.</p> <p>Methods</p> <p>Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms.</p> <p>Results</p> <p>The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it.</p> <p>Conclusions</p> <p>Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete communication architecture to simulate the exchange of TISS data between systems according to the openEHR approach still needs to be designed and implemented.</p

    Percutaneous transluminal mitral commissurotomy in pregnant women with severe mitral stenosis

    Get PDF
    Background: Mitral stenosis tends to worsen during pregnancy because of the increase in the cardiac output and the heart rate. In nonresponders to medical therapy, percutaneous transluminal mitral commissurotomy (PTMC) may be performed when there is a suitable valvular anatomy. In this study, we aimed to investigate the clinical and fetal outcomes of pregnant women with mitral stenosis who underwent PTMC. Methods: Thirty-one patients undergoing PTMC during pregnancy were enrolled in this study. The mitral valve area (MVA), the transmitral valve mean gradient (MVMG), and the severity of mitral regurgitation were assessed pre- and postprocedurally by transthoracic and transesophageal echocardiography. The radiation time was measured during the procedure. The patients were followed up during pregnancy, and the neonates were monitored for weight, height, the head circumference, the birth Apgar score, and the adverse effects of radiation for at least 12 months. Results: PTMC was successfully performed on 29 (93.5) patients. No maternal death or pulmonary edema was reported. The mean MVA significantly increased (from 0.73±0.17 cm2to 1.28±0.24 cm2; P&lt;0.001), and the mean MVMG significantly decreased (from 19.62±5.91 mmHg to 8.90±4.73 mmHg; P&lt;0.001) after the procedure. A significant decrease in the systolic pulmonary artery pressure was also detected. Mitral regurgitation did not increase in severity in 16 (51.6) patients. There was no significant relationship between the Apgar score, weight, height, and the head circumference at birth and at the radiation time. Conclusion: In our series, PTMC during pregnancy was a safe and effective procedure. Lowering the radiation time with low frame-count techniques confers a significant decrease in radiation-related complications. © 2019, Tehran Heart Center. All Rights Reserved

    Performance Characteristics Of Non-Arc Double Stator Permanent Magnet Generator

    Get PDF
    The improvement in the power density in the double stator configurations is feasible with increase in the electrical loading of the electrical machines. This type of newer configuration is finding significant applications in improvising energy generation, more commonly for renewable energy generation. Various double stator configurations with non-arc permanent magnet machines for power density are modelled and analyzed in this paper. Finite Element Method (FEM) is used to simulate for the generation capability including the electromagnetics parameters such as flux linkage and open circuit voltage. A new slotted rotor structure is evolved based on the magnetic flux flow control inside the machine. The proposed structure is then fabricated in the laboratory and tested for operating characteristics with load circuit. The proposed machine produces a maximum power of 600W at speed of 2000 rpm with 75% of maximum efficiency with the micro-hydro generation unit

    Induction of oxidative stress as a mechanism of action of chemopreventive agents against cancer

    Get PDF
    Prevention is a promising option for the control of cancer. Cellular redox changes have emerged as a pivotal and proximal event in cancer. In this review, we provide a brief background on redox biochemistry, discuss the important distinction between redox signalling and oxidative stress, and outline the ‘multiple biological personalities' of reactive oxygen and nitrogen species: at low concentrations they protect the cell; at higher concentrations they can damage many biological molecules, such as DNA, proteins, and lipids; and, as we argue here, they may also prevent cancer by initiating the death of the transformed cell. Nitric oxide-donating aspirin is discussed as an instructive example: it generates a state of oxidative stress through which it affects several redox-sensitive signalling pathways, leading ultimately to the elimination of the neoplastic cell via apoptosis or necrosis. As additional examples, we discuss the chemopreventive n–3 polyunsaturated fatty acids and conventional nonsteroidal anti-inflammatory drugs, which induce cell death through redox changes. We conclude that modulation of redox biochemistry represents a fruitful approach to cancer prevention

    Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity™ (PSP)

    Get PDF
    BACKGROUND: I'm-Yunity™ (PSP) is a mushroom extract derived from deep-layer cultivated mycelia of the patented Cov-1 strain of Coriolus versicolor (CV), which contains as its main bioactive ingredient a family of polysaccharo-peptide with heterogeneous charge properties and molecular sizes. I'm-Yunity™ (PSP) is used as a dietary supplement by cancer patients and by individuals diagnosed with various chronic diseases. Laboratory studies have shown that I'm-Yunity™ (PSP) enhances immune functions and also modulates cellular responses to external challenges. Recently, I'm-Yunity™ (PSP) was also reported to exert potent anti-tumorigenic effects, evident by suppression of cell proliferation and induction of apoptosis in malignant cells. We investigate the mechanisms by which I'm-Yunity™ (PSP) elicits these effects. METHODS: Human leukemia HL-60 and U-937 cells were incubated with increasing doses of aqueous extracts of I'm-Yunity™ (PSP). Control and treated cells were harvested at various times and analyzed for changes in: (1) cell proliferation and viability, (2) cell cycle phase transition, (3) induction of apoptosis, (4) expression of cell cycle, apoptogenic/anti-apoptotic, and extracellular regulatory proteins. RESULTS: Aqueous extracts of I'm-Yunity™ (PSP) inhibited cell proliferation and induced apoptosis in HL-60 and U-937 cells, accompanied by a cell type-dependent disruption of the G(1)/S and G(2)/M phases of cell cycle progression. A more pronounced growth suppression was observed in treated HL-60 cells, which was correlated with time- and dose-dependent down regulation of the retinoblastoma protein Rb, diminution in the expression of anti-apoptotic proteins bcl-2 and survivin, increase in apoptogenic proteins bax and cytochrome c, and cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product. Moreover, I'm-Yunity™ (PSP)-treated HL-60 cells also showed a substantial decrease in p65 and to a lesser degree p50 forms of transcription factor NF-κB, which was accompanied by a reduction in the expression of cyclooxygenase 2 (COX2). I'm-Yunity™ (PSP) also elicited an increase in STAT1 (signal transducer and activator of transcription) and correspondingly, decrease in the expression of activated form of ERK (extracellular signal-regulated kinase). CONCLUSION: Aqueous extracts of I'm-Yunity™ (PSP) induces cell cycle arrest and alterations in the expression of apoptogenic/anti-apoptotic and extracellular signaling regulatory proteins in human leukemia cells, the net result being suppression of proliferation and increase in apoptosis. These findings may contribute to the reported clinical and overall health effects of I'm-Yunity™ (PSP)

    COMPARE CPM-RMI Trial: Intramyocardial transplantation of autologous bone marrow-derived CD133+ Cells and MNCs during CABG in patients with recent MI: A Phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial

    Get PDF
    Objective: The regenerative potential of bone marrow-derived mononuclear cells (MNCs) and CD133+ stem cells in the heart varies in terms of their pro-angiogenic effects. This phase II/III, multicenter and double-blind trial is designed to compare the functional effects of intramyocardial autologous transplantation of both cell types and placebo in patients with recent myocardial infarction (RMI) post-coronary artery bypass graft. Materials and Methods: This was a phase II/III, randomized, double-blind, placebo-controlled trial COMPARE CPM-RMI (CD133, Placebo, MNCs - recent myocardial infarction) conducted in accordance with the Declaration of Helsinki that assessed the safety and efficacy of CD133 and MNCs compared to placebo in patients with RMI. We randomly assigned 77 eligible RMI patients selected from 5 hospitals to receive CD133+ cells, MNC, or a placebo. Patients underwent gated single photon emission computed tomography assessments at 6 and 18 months post-intramyocardial transplantation. We tested the normally distributed efficacy outcomes with a mixed analysis of variance model that used the entire data set of baseline and between-group comparisons as well as within subject (time) and group�time interaction terms. Results: There were no related serious adverse events reported. The intramyocardial transplantation of both cell types increased left ventricular ejection fraction by 9 95% confidence intervals (CI): 2.14% to 15.78%, P=0.01 and improved decreased systolic wall thickening by -3.7 (95% CI: -7.07 to -0.42, P=0.03). The CD133 group showed significantly decreased non-viable segments by 75% (P=0.001) compared to the placebo and 60% (P=0.01) compared to the MNC group. We observed this improvement at both the 6- and 18-month time points. Conclusion: Intramyocardial injections of CD133+ cells or MNCs appeared to be safe and efficient with superiority of CD133+ cells for patients with RMI. Although the sample size precluded a definitive statement about clinical outcomes, these results have provided the basis for larger studies to confirm definitive evidence about the efficacy of these cell types (Registration Number: NCT01167751). © 2018 Royan Institute (ACECR). All Rights Reserved
    corecore