26 research outputs found

    Endothelial Activation Microparticles and Inflammation Status Improve with Exercise Training in African Americans

    Get PDF
    African Americans have the highest prevalence of hypertension in the world which may emanate from their predisposition to heightened endothelial inflammation. The purpose of this study was to determine the effects of a 6-month aerobic exercise training (AEXT) intervention on the inflammatory biomarkers interleukin-10 (IL-10), interleukin-6 (IL-6), and endothelial microparticle (EMP) CD62E+ and endothelial function assessed by flow-mediated dilation (FMD) in African Americans. A secondary purpose was to evaluate whether changes in IL-10, IL-6, or CD62E+ EMPs predicted the change in FMD following the 6-month AEXT intervention. A pre-post design was employed with baseline evaluation including office blood pressure, FMD, fasting blood sampling, and graded exercise testing. Participants engaged in 6 months of AEXT. Following the AEXT intervention, all baseline tests were repeated. FMD significantly increased, CD62E+ EMPs and IL-6 significantly decreased, and IL-10 increased but not significantly following AEXT. Changes in inflammatory biomarkers did not significantly predict the change in FMD. The change in significantly predicted the change in IL-10. Based on these results, AEXT may be a viable, nonpharmacological method to improve inflammation status and endothelial function and thereby contribute to risk reduction for cardiovascular disease in African Americans

    Hippocampal protein expression is differentially affected by chronic paroxetine treatment in adolescent and adult rats: a possible mechanism of “paradoxical” antidepressant responses in young persons

    Get PDF
    Selective serotonin reuptake inhibitors (SSRIs) are commonly recognised as the pharmacological treatment of choice for patients with depressive disorders, yet their use in adolescent populations has come under scrutiny following reports of minimal efficacy and an increased risk of suicidal ideation and behavior in this age group. The biological mechanisms underlying these effects are largely unknown. Accordingly, the current study examined changes in hippocampal protein expression following chronic administration of paroxetine in drinking water (target dose = 10 mg/kg for 22 days) to adult and adolescent rats. Results indicated age-specific changes in protein expression, with paroxetine significantly altering expression of 8 proteins in adolescents only and 10 proteins solely in adults. A further 12 proteins were significantly altered in both adolescents and adults. In adults, protein changes were generally suggestive of a neurotrophic and neuroprotective effect of paroxetine, with significant downregulation of apoptotic proteins Galectin 7 and Cathepsin B, and upregulation of the neurotrophic factor Neurogenin 1 and the antioxidant proteins Aldose reductase and Carbonyl reductase 3. Phosphodiesterase 10A, a signalling protein associated with major depressive disorder, was also downregulated (−6.5 fold) in adult rats. Adolescent rats failed to show the neurotrophic and neuroprotective effects observed in adults, instead displaying upregulation of the proapoptotic protein BH3-interacting domain death agonist (4.3 fold). Adolescent protein expression profiles also suggested impaired phosphoinositide signalling (Protein kinase C: −3.1 fold) and altered neurotransmitter transport and release (Syntaxin 7: 5.7 fold; Dynamin 1: −6.9 fold). The results of the present study provide clues as to possible mechanisms underlying the atypical response of human adolescents to paroxetine treatment
    corecore