84 research outputs found

    The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding

    Get PDF
    AbstractPandemic influenza viral infections have been associated with viral pneumonia. Chimeric influenza viruses with the hemagglutinin segment of the 1918, 1957, 1968, or 2009 pandemic influenza viruses in the context of a seasonal H1N1 influenza genome were constructed to analyze the role of hemagglutinin (HA) in pathogenesis and cell tropism in a mouse model. We also explored whether there was an association between the ability of lung surfactant protein D (SP-D) to bind to the HA and the ability of the corresponding chimeric virus to infect bronchiolar and alveolar epithelial cells of the lower respiratory tract. Viruses expressing the hemagglutinin of pandemic viruses were associated with significant pathology in the lower respiratory tract, including acute inflammation, and showed low binding activity for SP-D. In contrast, the virus expressing the HA of a seasonal influenza strain induced only mild disease with little lung pathology in infected mice and exhibited strong in vitro binding to SP-D

    Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    Get PDF
    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance

    Differential Effects of Influenza Virus NA, HA Head, and HA Stalk Antibodies on Peripheral Blood Leukocyte Gene Expression during Human Infection.

    Get PDF
    In this study, we examined the relationships between anti-influenza virus serum antibody titers, clinical disease, and peripheral blood leukocyte (PBL) global gene expression during presymptomatic, acute, and convalescent illness in 83 participants infected with 2009 pandemic H1N1 virus in a human influenza challenge model. Using traditional statistical and logistic regression modeling approaches, profiles of differentially expressed genes that correlated with active viral shedding, predicted length of viral shedding, and predicted illness severity were identified. These analyses further demonstrated that challenge participants fell into three peripheral blood leukocyte gene expression phenotypes that significantly correlated with different clinical outcomes and prechallenge serum titers of antibodies specific for the viral neuraminidase, hemagglutinin head, and hemagglutinin stalk. Higher prechallenge serum antibody titers were inversely correlated with leukocyte responsiveness in participants with active disease and could mask expression of peripheral blood markers of clinical disease in some participants, including viral shedding and symptom severity. Consequently, preexisting anti-influenza antibodies may modulate PBL gene expression, and this must be taken into consideration in the development and interpretation of peripheral blood diagnostic and prognostic assays of influenza infection

    Neurobiological Mechanisms That Contribute to Stress-related Cocaine Use

    Get PDF
    The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a β€œstage setter” for drug use – increasing sensitivity to cocaine and drug-associated cues – under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on nine research projects.U.S. Energy Research and Development Administration (Contract EG-77-S-02-4370)U. S. Air Force - Office of Scientific Research (Contract F44620-72-C-0057)Joint Services Electronics Program (Contract DAAB07-76-C-1400)National Science Foundation (Grant PHY75-15421-AO1)National Science Foundation (Grant PHY77-09155)National Science Foundation (Grant CHE76-81750)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-2972A

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on eight research projects.National Science Foundation (Grant PHY77-09155)Joint Services Electronics Program (Contract DAAG29-78-C-0020)U. S. Department of Energy (Grant EG-77-S-02-4370)National Science Foundation (Grant DMR 77-10084)National Aeronautics and Space Administration (Grant NSG-1551)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-2972)National Science Foundation (Grant CHE76-81750

    Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain

    Get PDF
    Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle

    Influenza Virus Evolution, Host Adaptation, and Pandemic Formation

    Get PDF
    Newly emerging or β€œre-emerging” viral diseases continue to pose significant global public health threats. Prototypic are influenza viruses that are major causes of human respiratory infections and mortality. Influenza viruses can cause zoonotic infections and adapt to humans, leading to sustained transmission and emergence of novel viruses. Mechanisms by which viruses evolve in one host, cause zoonotic infection, and adapt to a new host species remain unelucidated. Here, we review the evolution of influenza A viruses in their reservoir hosts and discuss genetic changes associated with introduction of novel viruses into humans, leading to pandemics and the establishment of seasonal viruses
    • …
    corecore