11 research outputs found

    A_k Generalization of the O(1) Loop Model on a Cylinder: Affine Hecke Algebra, q-KZ Equation and the Sum Rule

    Full text link
    We study the A_k generalized model of the O(1) loop model on a cylinder. The affine Hecke algebra associated with the model is characterized by a vanishing condition, the cylindric relation. We present two representations of the algebra: the first one is the spin representation, and the other is in the vector space of states of the A_k generalized model. A state of the model is a natural generalization of a link pattern. We propose a new graphical way of dealing with the Yang-Baxter equation and qq-symmetrizers by the use of the rhombus tiling. The relation between two representations and the meaning of the cylindric relations are clarified. The sum rule for this model is obtained by solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and Section 4.3 adde

    Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries

    Full text link
    We propose new conjectures relating sum rules for the polynomial solution of the qKZ equation with open (reflecting) boundaries as a function of the quantum parameter qq and the τ\tau-enumeration of Plane Partitions with specific symmetries, with τ=(q+q1)\tau=-(q+q^{-1}). We also find a conjectural relation \`a la Razumov-Stroganov between the τ0\tau\to 0 limit of the qKZ solution and refined numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision

    Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices

    Full text link
    The integrable loop model with mixed boundary conditions based on the 1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered. The corresponding qKZ equation is introduced and its minimal degree solution described. As a result, the sum of the properly normalized components of the ground state in size L is computed and shown to be equal to the number of Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A refined counting is also considered

    Polynomial solutions of qKZ equation and ground state of XXZ spin chain at Delta = -1/2

    Full text link
    Integral formulae for polynomial solutions of the quantum Knizhnik-Zamolodchikov equations associated with the R-matrix of the six-vertex model are considered. It is proved that when the deformation parameter q is equal to e^{+- 2 pi i/3} and the number of vertical lines of the lattice is odd, the solution under consideration is an eigenvector of the inhomogeneous transfer matrix of the six-vertex model. In the homogeneous limit it is a ground state eigenvector of the antiferromagnetic XXZ spin chain with the anisotropy parameter Delta equal to -1/2 and odd number of sites. The obtained integral representations for the components of this eigenvector allow to prove some conjectures on its properties formulated earlier. A new statement relating the ground state components of XXZ spin chains and Temperley-Lieb loop models is formulated and proved.Comment: v2: cosmetic changes, new section on refined TSSCPPs vs refined ASM

    Spin chains with dynamical lattice supersymmetry

    Full text link
    Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the N=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension admits a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.Comment: Revised version, 52 pages, 2 figure

    Boundary quantum Knizhnik-Zamolodchikov equations and Bethe vectors

    Get PDF
    Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of Uq(sl(2)^)U_q(\hat{\frak{sl}(2)}) is involved. We also consider their rational and classical degenerations
    corecore