Abstract

We study the A_k generalized model of the O(1) loop model on a cylinder. The affine Hecke algebra associated with the model is characterized by a vanishing condition, the cylindric relation. We present two representations of the algebra: the first one is the spin representation, and the other is in the vector space of states of the A_k generalized model. A state of the model is a natural generalization of a link pattern. We propose a new graphical way of dealing with the Yang-Baxter equation and qq-symmetrizers by the use of the rhombus tiling. The relation between two representations and the meaning of the cylindric relations are clarified. The sum rule for this model is obtained by solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and Section 4.3 adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019