115 research outputs found

    High efficiency photon counting using stopped light

    Full text link
    Single-photon detection and photon counting play a central role in a large number of quantum communication and computation protocols. While the efficiency of state-of-the-art photo-detectors is well below the desired limits, quantum state measurements in trapped ions can be carried out with efficiencies approaching 100%. Here, we propose a method that can in principle achieve ideal photon counting, by combining the techniques of photonic quantum memory and ion-trap fluorescence detection: after mapping the quantum state of a propagating light pulse onto metastable collective excitations of a trapped cold atomic gas, it is possible to monitor the resonance fluorescence induced by an additional laser field that only couples to the metastable excited state. Even with a photon collection/detection efficiency as low as 10%, it is possible to achieve photon counting with efficiency approaching 100%.Comment: 4 page

    Temperature Variation of Ultra Slow Light in a Cold Gas

    Get PDF
    A model is developed to explain the temperature dependence of the group velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594 (1999)). The group velocity is quite sensitive to the change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily responsible for the observed behavior.Comment: 12 pages, 4 figure

    Studies of group velocity reduction and pulse regeneration with and without the adiabatic approximation

    Get PDF
    We present a detailed semiclassical study on the propagation of a pair of optical fields in resonant media with and without adiabatic approximation. In the case of near and on resonance excitation, we show detailed calculation, both analytically and numerically, on the extremely slowly propagating probe pulse and the subsequent regeneration of a pulse via a coupling laser. Further discussions on the adiabatic approximation provide many subtle understandings of the process including the effect on the band width of the regenerated optical field. Indeed, all features of the optical pulse regeneration and most of the intricate details of the process can be obtained with the present treatment without invoke a full field theoretical method. For very far off resonance excitation, we show that the analytical solution is nearly detuning independent, a surprising result that is vigorously tested and compared to numerical calculations with very good agreement.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Spatial evolution of short pulses under coherent population trapping

    Full text link
    Spatial and temporal evolution is studied of two powerful short laser pulses having different wavelengths and interacting with a dense three-level Lambda-type optical medium under coherent population trapping. A general case of unequal oscillator strengths of the transitions is considered. Durations of the probe pulse and the coupling pulse T1,2T_{1,2} (T2>T1T_2>T_1) are assumed to be shorter than any of the relevant atomic relaxation times. We propose analytical and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger equations and reduced wave equations in the adiabatic limit with the account of the first non-adiabatic correction. The adiabaticity criterion is also discussed with the account of the pulse propagation. The dynamics of propagation is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that envelopes of the pulses slightly change throughout the medium length at the initial stage of propagation. This distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is completely reemitted into the coupling pulse during propagation. The effect of localization of the atomic coherence has been observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84}, 5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review

    Kerr Noise Reduction and Squeezing

    Get PDF
    We introduce a model of squeezing and noise reduction in the Kerr effect that accounts for noise in all quadratures of the driving field. Consequently we show that Kerr squeezing is much more sensitive to driving noise than squeezing produced by second harmonic generation (SHG).We experimentally demonstrate this sensitivity using a nonlinear system that tunes between strong classical SHG and Kerr behaviours. Whilst the system experiences strong squeezing in the SHG limit, it experiences no squeezing in the Kerr limit, although it does experience strong classical noise reduction, or classical squeezing

    Vacuum Squeezing in Atomic Media via Self-Rotation

    Full text link
    When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR

    Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity

    Full text link
    We study the Autler-Townes spectrum of a V-type atom coupled to a single-mode, frequency-tunable cavity field at finite termperature, with a pre-selected polarization in the bad cavity limit, and show that, when the mean number of thermal photons N≫1N\gg 1 and the excited sublevel splitting is very large (the same order as the cavity linewidth), the probe gain may occur at either sideband of the doublet, depending on the cavity frequency, due to the cavity-induced interference.Comment: Minor changes are mad

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Controlling photons using electromagnetically induced transparency

    Get PDF
    It is well known that a dielectric medium can be used to manipulate properties of light pulses. However, optical absorption limits the extent of possible control: this is especially important for weak light pulses. Absorption in an opaque medium can be eliminated via quantum mechanical interference, an effect known as electromagnetically induced transparency. Theoretical and experimental work has demonstrated that this phenomenon can be used to slow down light pulses dramatically, or even bring them to a complete halt. Interactions between photons in such an atomic medium can be many orders of magnitude stronger than in conventional optical materials
    • …
    corecore