213 research outputs found

    Charge transport in selenium based amorphous xerographic photoreceptors

    Get PDF
    Imperial Users onl

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    Cataloged from PDF version of article.We investigate the structural and electrical properties of AlxIn1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1-xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1-xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. (C) 2012 Elsevier B.V. All rights reserved

    Electron transport properties in Al0.25Ga0.75N/AIN/GaN hetrostructures with different InGaN back barrier layers and GaN channel thickness grown by MOCVD

    Get PDF
    Cataloged from PDF version of article.The electron transport properties in Al0.25Ga0.75N/AlN/GaN/InxGa1-xN/GaN double heterostructures with various indium compositions and GaN channel thicknesses were investigated. Samples were grown on c-plane sapphire substrates by MOCVD and evaluated using variable temperature Hall effect measurements. In order to understand the observed transport properties, various scattering mechanisms, such as acoustic phonon, optical phonon, interface roughness, background impurity, and alloy disorder, were included in the theoretical model that was applied to the temperature-dependent mobility data. It was found that low temperature (T 160 K), optical phonon scattering is the dominant scattering mechanism for AlGaN/AlN/GaN/InGaN/GaN heterostructures. The higher mobility of the structures with InGaN back barriers was attributed to the large conduction band discontinuity obtained at the channel/buffer interface, which leads to better electron confinement. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature

    Get PDF
    An apparatus capable of rapid measurement of the Seebeck coefficient and electrical resistivity at room temperature is reported. The novel aspect of this apparatus is the use of 4 multifunctional probes that comprise a junction of two conductors at the tip and serve as both thermocouples and electrical contacts. In addition, one of the probes has a built-in heater that can establish a temperature gradient in the sample for the Seebeck measurement. The technique does not require special sample geometries or preparation of contacts and is suitable for bulk and thin film materials. Together with automated sample stage and data acquisition, the equipment is able to measure both the Seebeck coefficient and electrical resistivity in less than 20 s with good accuracy. Less than 5% and 4% relative errors were found for the measurement of the Seebeck coefficient and electrical resistivity, respectively. This makes the apparatus especially useful for high throughput evaluation of thermoelectric materials.The authors wish to acknowledge financial support from the Accelerated Metallurgy Project, which is co-funded by the European Commission in the 7th Framework Programme (Contract No. NMP4-LA-2011-263206), by the European Space Agency and by the individual partner organizations. Moreover, the assistance of the electrical and mechanical workshops from the Cardiff School of Engineering is acknowledged

    Low power field generation for magneto-optic fiber-based interferometric switches

    Get PDF
    A new fiber-based, magneto-optic switch is proposed with a novel approach for low power and efficient operation. The switch, with reasonable switching speed compared to competitive designs, operates at considerably reduced power levels, which makes it a practical deployable solution. The basic switch setup consists of a Faraday rotator in a Sagnac fiber-optic interferometer in which optical switching is controlled by an electronic driving circuit. The electronic system generates a magnetic field through the Faraday rotator by driving current through a specially designed two-coil system. The new coil system allows for sufficient field generation at low quiescent power levels while maintaining very short optical rise and fall times. The design and considerations as well as the effect of mutual inductance between the two coils and its influence on switching times are investigated. The optical system consists of a Sagnac interferometer with a Faraday rotator within the Sagnac loop. Appropriate phase shift for interference is achieved by the proposed field generating system designed for the magneto-optical element. The theory of operation, design, experimental results, and optical and electronic setup are presented and analyzed

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    We investigate the structural and electrical properties of Al xIn 1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested Al xIn 1 -xN/AlN/GaN/Al 0.04Ga 0.96N heterostructures when compared to the standard Al xIn 1 -xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al 0.04Ga 0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the Al xIn 1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. © 2012 Elsevier B.V. All rights reserved
    corecore