15 research outputs found

    Supporting Information for: A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells

    Get PDF
    Selenoproteins are an elite group of proteins containing a rare amino acid, selenocysteine (Sec), encoded by the codon, UGA. In eukaryotes, incorporation of Sec requires a Sec insertion sequence (SECIS) element, a stem–loop structure located in the 3\u27-untranslated regions of selenoprotein mRNAs. Here we report identification of a noncanonical form of SECIS element in Toxoplasma gondii and Neospora canine, single-celled apicomplexan parasites of humans and domestic animals. This SECIS has a GGGA sequence in the SBP2-binding site in place of AUGA previously considered invariant. Using a combination of computational and molecular techniques, we show that Toxoplasma and Neospora possess both canonical and noncanonical SECIS elements. The GGGA-type SECIS element supported Sec insertion in mammalian HEK 293 and NIH 3T3 cells and did so more efficiently than the natural mammalian SECIS elements tested. In addition, mammalian type I and type II SECIS elements mutated into the GGGA forms were functional but manifested decreased Sec insertion efficiency. We carried out computational searches for both AUGA and GGGA forms of SECIS elements in Toxoplasma and detected five selenoprotein genes, including one coding for a previously undescribed selenoprotein, designated SelQ, and two containing the GGGA form of the SECIS element. In contrast, the GGGA-type SECIS elements were not detected in mammals and nematodes. As a practical outcome of the study, we developed pSelExpress1, a vector for convenient expression of selenoproteins in mammalian cells. It contains an SBP2 gene and the most efficient tested SECIS element: an AUGA mutant of the GGGA-type Toxoplasma SelT structure

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency

    Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression

    Get PDF
    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (\u3e28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower inMRliver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize theMRselenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed inHEK293cells,MRGPx1waspresent in low levels,and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNAwas present in lower levels inMRliver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency

    UNDERSTANDING OF FUNCTIONS OF SELENOPROTEINS AND DIETARY SELENIUM BY USING ANIMAL MODELS

    Get PDF
    Selenium (Se) is a trace element that is incorporated into proteins in the form of the 21st amino acid, selenocysteine (Sec). Se supplementation was reported to have beneficial roles in prevention of cardiovascular and muscle disorders, cancer prevention and enhancement of the immune function. However, recent studies also showed that excessive dietary Se increases the risk of development of type 2 diabetes mellitus. Thus, better understanding of Se and selenoprotein functions is required. We used three approaches to address this problem. First, we used high-throughput sequencing to examine composition of the gut microflora in mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets, and then link information to selenoprotein expression and function. Our data indicate that Se supplementation affects both the composition of the intestinal microflora and the colonization of the gastrointestinal tract in germ-free mice, which in turn, influence the host selenium status and selenoproteome expression. Second, we characterized the phenotype of the 15 kDa selenoprotein (Sep15) knockout (KO) mice. Sep15 is a thioredoxin-like, endoplasmic reticulum (ER)-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. We found that Sep15 KO mice develop nuclear cataracts at an early age. We suggest that the cataracts resulted from improper folding status of lens proteins caused by Sep15 deficiency. Third, we evaluated the role of Se and selenoproteins in naked mole rat (MR) Heterocephalus glaber, a rodent model of delayed aging due to its unusually long lifespan (\u3e28 years). Tissue imaging by X-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR tissues. Metabolic labeling of MR cells with 75Se followed by sequencing and assembly of the MR transcriptome revealed the loss of expression of glutathione peroxidase 1 (GPx1), whereas expression of other selenoproteins was preserved. Thus, MR is characterized by reduced utilization of selenium due to a specific defect in GPx1 expression. Overall, the use of rodent models allowed us to obtain insights into interplay of dietary selenium, gut microbiota, and expression and function of several selenoproteins. Advisors: Vadim N. Gladyshev, Dmitri E. Fomenk

    A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells

    Get PDF
    Selenoproteins are an elite group of proteins containing a rare amino acid, selenocysteine (Sec), encoded by the codon, UGA. In eukaryotes, incorporation of Sec requires a Sec insertion sequence (SECIS) element, a stem–loop structure located in the 3’-untranslated regions of selenoprotein mRNAs. Here we report identification of a noncanonical form of SECIS element in Toxoplasma gondii and Neospora canine, single-celled apicomplexan parasites of humans and domestic animals. This SECIS has a GGGA sequence in the SBP2-binding site in place of AUGA previously considered invariant. Using a combination of computational and molecular techniques, we show that Toxoplasma and Neospora possess both canonical and noncanonical SECIS elements. The GGGA-type SECIS element supported Sec insertion in mammalian HEK 293 and NIH 3T3 cells and did so more efficiently than the natural mammalian SECIS elements tested. In addition, mammalian type I and type II SECIS elements mutated into the GGGA forms were functional but manifested decreased Sec insertion efficiency. We carried out computational searches for both AUGA and GGGA forms of SECIS elements in Toxoplasma and detected five selenoprotein genes, including one coding for a previously undescribed selenoprotein, designated SelQ, and two containing the GGGA form of the SECIS element. In contrast, the GGGA-type SECIS elements were not detected in mammals and nematodes. As a practical outcome of the study, we developed pSelExpress1, a vector for convenient expression of selenoproteins in mammalian cells. It contains an SBP2 gene and the most efficient tested SECIS element: an AUGA mutant of the GGGA-type Toxoplasma SelT structure

    X-ray Fluorescence Microscopy Reveals the Role of Selenium in Spermatogenesis

    Get PDF
    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis

    Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    Get PDF
    Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    Genome sequencing reveals insights into physiology and longevity of the naked mole rat

    No full text
    The naked mole rat (NMR, Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal(1). Although the size of a mouse, its maximum lifespan exceeds 30 years and makes this animal the longest living rodent. NMRs show negligible senescence, no age-related increase in mortality, and high fecundity until death(2). In addition to delayed aging, NMRs are resistant to both spontaneous cancer and experimentally induced tumorigenesis(3,4). NMRs pose a challenge to the theories that link aging, cancer and redox homeostasis. Although characterized by significant oxidative stress(5), the NMR proteome does not show age-related susceptibility to oxidative damage nor increased ubiquitination(6). NMRs naturally reside in large colonies with a single breeding female, the “queen,” who suppresses the sexual maturity of her subordinates(11). NMRs also live in full darkness, at low oxygen and high carbon dioxide concentrations(7), and are unable to sustain thermogenesis(8) nor feel certain types of pain(9,10). Here we report sequencing and analysis of the NMR genome, which revealed unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness, altered visual function, circadian rhythms and taste sensing, and insensitivity to low oxygen. This information provides insights into NMR’s exceptional longevity and capabilities to live in hostile conditions, in the dark and at low oxygen. The extreme traits of NMR, together with the reported genome and transcriptome information, offer unprecedented opportunities for understanding aging and advancing many other areas of biological and biomedical research

    Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression

    Get PDF
    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with (75)Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression
    corecore