3 research outputs found

    Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study

    Get PDF
    AbstractAnalysis was carried out to determine the physicochemical characteristics – morphological and structural, electrokinetic properties, elemental composition and functional groups – of peat, with a view to its use as a potential adsorbent of heavy metal ions from aqueous solutions. A significant part of the study comprised tests of adsorption of nickel(II) and lead(II) ions from model solutions. It was determined how the parameters of the adsorption process (time, pH, quantity of sorbent) influence the effectiveness of removal of nickel(II) and lead(II) ions. The adsorption kinetics are also described, using a pseudo-first-order model and pseudo-second-order models of types 1–4. The results show strong correspondence to a pseudo-second-order kinetics model of type 1 (r2=0.999 for all initial concentrations). Another key part of the analysis was the use of the Langmuir and Freundlich models to determine the adsorption isotherms. The experimental data were in strong correspondence with Langmuir’s isotherm model. The sorption capacities of peat with respect to nickel(II) and lead(II) ions were 61.27mg(Ni2+)/g and 82.31mg(Pb2+)/g. Desorption tests confirmed the possibility of reusing peat as an effective sorbent of environmentally harmful metals. A mechanism is also proposed for the adsorption of Ni2+ and Pb2+ ions on adsorbent

    Occurrence and molecular characterization of Escherichia coli strains isolated from black grouse (Lyrurus tetrix) from the Karkonosze National Park in Poland

    No full text
    Abstract The purpose of this study was to characterize Escherichia coli (E. coli) strains isolated from wild black grouse (Lyrurus tetrix), carried out due to the crossing of hiking trails with wild bird habitats from the Karkonosze National Park. Twenty-seven E. coli isolates were obtained from fecal samples collected during the winter months of 2017 and 2018. The strains were assigned to their relevant phylo-groups and the prevalence of virulence genes characteristic of APEC strains (irp2, astA, iss, iucD, papC, tsh, vat, cva/cvi, stx2f) was checked using PCR analysis. In addition, the phenotypic and genotypic resistance to antibiotics was determined. The entire study provided a better understanding of the potential bacteriological threat to wild birds of the Karkonosze National Park. The results showed that 55.6% of the strains belonged to phylo-group B1 (15/27), 33.3% to group B2 (9/27) and 11.1% to group D (3/27). Among the virulence genes tested, irp2 was detected in 25.9% of isolates (7/27), vat in 22.2% (6/27) and iucD in 3.7% (1/27). The tested E. coli strains showed susceptibility to most antimicrobials, only 14 (51.9%) of them were intermediate resistant or resistant to sulfamethoxazole. The presence of none of the tested genes responsible for resistance to selected antibiotics was identified. Our research indicates a low level of transfer of antimicrobial substances to the natural environment and confirms the effectiveness of the Karkonosze National Park’s activities to protect and restore black grouse habitats
    corecore