16 research outputs found

    Nonadiabatic Van der Pol oscillations in molecular transport

    Full text link
    The force exerted by the electrons on the nuclei of a current-carrying molecular junction can be manipulated to engineer nanoscale mechanical systems. In the adiabatic regime a peculiarity of these forces is negative friction, responsible for Van der Pol oscillations of the nuclear coordinates. In this work we study the robustness of the Van der Pol oscillations against high-frequency bias and gate voltage. For this purpose we go beyond the adiabatic approximation and perform full Ehrenfest dynamics simulations. The numerical scheme implements a mixed quantum-classical algorithm for open systems and is capable to deal with arbitrary time-dependent driving fields. We find that the Van der Pol oscillations are extremely stable. The nonadiabatic electron dynamics distorts the trajectory in the momentum-coordinate phase space but preserves the limit cycles in an average sense. We further show that high-frequency fields change both the oscillation amplitudes and the average nuclear positions. By switching the fields off at different times one obtains cycles of different amplitudes which attain the limit cycle only after considerably long times.Comment: 12 pages, 7 figure

    Interacting fermions in 1D disordered lattices: Exploring localization and transport properties with lattice density-functional theories

    Get PDF
    We investigate the static and dynamical behavior of 1D interacting fermions in disordered Hubbard chains, contacted to semi-infinite leads. The chains are described via the repulsive Anderson-Hubbard Hamiltonian, using static and time-dependent lattice density-functional theory. The dynamical behavior of our quantum transport system is performed via an integration scheme available in the literature, which we modify via the recursive Lanczos method, to increase its efficiency. To quantify the degree of localization due to disorder and interactions, we adapt the definition of the inverse participation ratio to obtain an indicator which is both suitable for quantum transport geometries and which can be obtained within density-functional theory. Lattice density functional theories are reviewed and, for contacted chains, we analyze the merits and limits of the coherent-potential approximation in describing the spectral properties, with interactions included via lattice density functional theory. Our approach appears to able to capture complex features due to the competition between disorder and interactions. Specifically, we find a dynamical enhancement of delocalization in presence of a finite bias, and an increase of the steady-state current induced by inter-particle interactions. This behavior is corroborated by results for the time-dependent densities and for the inverse participation ratio. Using short isolated chains with interaction and disorder, a brief comparative analysis between time-dependent density-functional theory and exact results is then given, followed by general conclusive remarks

    Biquadratic exchange interactions in two-dimensional magnets

    Get PDF
    Magnetism in recently discovered van der Waals materials has opened several avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g., Dzyaloshinskii–Moriya interactions) to successfully rationalize numerous observations, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results provide a theoretical framework for the exploration of different physical phenomena in 2D magnets where biquadratic exchange interactions have an important contribution

    Fabrication of Omniphobic‐Omniphilic Micropatterns using GPOSS‐PDMS Coating

    Get PDF
    Surfaces with special wettability properties, such as omniphobicity or omniphilicity, are essential for functional devices that use both aqueous and organic media. Micropatterning of omniphobic and omniphilic properties can provide a wide range of applications, including miniaturized experiments using both aqueous and organic media. Herein, an approach for creating omniphobic-omniphilic micropatterns based on selective photoacid polymerization of octa(3-glycidyloxypropyl) polyhedral oligomeric silsesquioxane modified with mono-aminopropyl-terminated polydimethylsiloxane is reported. The composition of the polymeric coatings using infrared spectroscopy; patterning accuracy using atomic force microscopy and scanning electron microscopy; wettability characteristics of the omniphobic, and omniphilic surfaces using contact angle measurements are studied. The proposed approach allows for single-step micropatterning (sub-10 µm) or macropatterning (3 mm). Liquids with surface tensions >22.8 mN m−1 can be confined to the omniphilic areas by the omniphobic borders. C2C12 cells are successfully cultivated in omniphilic areas, demonstrating their cell compatibility. The cells adhere to and grow on the entire surface of the pattern, without any signs of cytotoxicity. However, the strongest adhesion is observed in the omniphilic areas, making it possible to create cell micropatterns in a single step. The proposed method for the fabrication of omniphobic-omniphilic transparent, mechanically robust, biocompatible patterns can find applications in microfluidics, biotechnology or miniaturized biological screening experiments

    Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer

    Get PDF
    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers

    Non-equilibrium fermions within lattice density functional theory: quantum transport and ultracold-atom phenomena

    No full text
    Cutting-edge technology needs small, ultrafast devices, operational in a wide range of regimes. This calls for solids with novel, unconventional and tailorable properties. Great progress is expected from materials in which electron-electron and electron-phonon correlations strongly affect the dynamics ( i.e. "unforeseen" useful properties are expected to be most likely found in systems with complex behavior). In spite of the potentially huge technological pay-off, our understanding of these systems is rather incomplete, especially in non-equilibrium. Often, with knowledge of systems or phenomena at an early stage, it is rewarding to resort to model, simplified descriptions. This strategy is used in this thesis, where we study several models lattice systems via density-functional theory. The latter is a well established approach (in fact, it is the current method of choice) for investigations of real materials. In our research, we focussed on little understood properties of interacting many-particle systems, such as the time-dependent conduction properties of electronic devices in the presence of interactions, disorder, and lattice vibrations, or the expansion of ultracold fermion clouds in 3D optical lattices. All these systems were described in terms of Hubbard-type interactions for the electrons, and Holstein-type electron-phonon interactions. Our results show interesting features due to the interactions which depend on dimensionality; they also show a dynamical crossover for several properties, due to the competition between disorder and interaction. Finally, when lattice vibrations are included, we showed how it is possible to manipulate in a controlled way the nuclear dynamics of molecular device via fast electronic external fields, of potential interest for technologies employing nanomolecular motors

    Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems

    No full text
    The acceleration of parallel high-throughput first-principle calculations in the context of 3D (three dimensional) periodic boundary conditions for low-dimensional systems, and particularly 2D materials, is an important issue for new material design. Where the scalability rapidly deflated due to the use of large void unit cells along with a significant number of atoms, which should mimic layered structures in the vacuum space. In this report, we explored the scalability and performance of the Quantum ESPRESSO package in the hybrid central processing unit - graphics processing unit (CPU-GPU) environment. The study carried out in the comparison to CPU-based systems for simulations of 2D magnets where significant improvement of computational speed was achieved based on the IBM ESSL SMP CUDA library. As an example of physics-related results, we have computed and discussed the ionicity-covalency and related ferro- (FM) and antiferro-magnetic (AFM) exchange competitions computed for some CrX3 compounds. Further, it has been demonstrated how this exchange interplay leads to high-order effects for the magnetism of the 1L-RuCl3 compound

    Three-dimensional dynamics of a fermionic Mott wedding-cake in clean and disordered optical lattices

    Get PDF
    Non-equilibrium quantum phenomena are ubiquitous in nature. Yet, theoretical predictions on the real-time dynamics of many-body quantum systems remain formidably challenging, especially for high dimensions, strong interactions or disordered samples. Here we consider a notable paradigm of strongly correlated Fermi systems, the Mott phase of the Hubbard model, in a setup resembling ultracold-gases experiments. We study the three-dimensional expansion of a cloud into an optical lattice after removing the confining potential. We use time-dependent density-functional theory combined with dynamical mean-field theory, considering interactions below and above the Mott threshold, as well as disorder effects. At strong coupling, we observe multiple timescales in the melting of the Mott wedding-cake structure, as the Mott plateau persist orders of magnitude longer than the band insulating core. We also show that disorder destabilises the Mott plateau and that, compared to a clean setup, localisation can decrease, creating an interesting dynamic crossover during the expansion
    corecore