135 research outputs found

    Physical bases of thermal stability of proteins: A comparative study on homologous pairs from mesophilic and thermophilic organisms

    Get PDF
    We used classical molecular dynamics simulation method to investigate physical factors responsible for the increased thermal stability of proteins from thermophilic and hyperthermophilic organisms. Subject of investigation were two pairs of homologous proteins from the functional classes of: 1) cold shock proteins from Escherichia coli (mesophilic) and Bacillus caldolyticus (thermophilic) and 2) acylphosphatases from Bos taurus (mesophilic) and Pyrococcus horicoshii (hyperthermophilic). The simulations were performed for three different temperatures: 298 K, 373 K and 500 K. The results confirmed the common opinion that salt bridges and internal hydrogen bond networks stabilize thermostable proteins at high temperature. In addition, we found that at high temperatures the packing defects, in terms of cavity formation, increase with a preference to the mesophilic protein. Since cavities are a destabilizing factor, we conclude that due to specific packing organisation of proteins of extremophilic organisms, these proteins are more resistant to temperature induced cavity formation, which contributes to their enhanced tolerance towards increase in temperature

    Detection of Inflammation via Volatile Cues in Human Urine

    Get PDF
    Contagious disease is a major threat to survival, and the cost of relying on the immune system to defeat pathogens is high; therefore, behavioral avoidance of contagious individuals is arguably an adaptive strategy. Animal findings demonstrate the ability to detect and avoid sick individuals by the aid of olfactory cues, and a recent study indicated that human axillary odor also becomes more aversive as a function of immune activation. By injecting healthy human participants with lipopolysaccharide (0.6 ng/kg body weight) to experimentally induce inflammation, this study demonstrates that natural daily rhythms of urine odor—its perceived dimensions and volatile profile—are altered within hours of inflammation onset. Whereas healthy human urine decreases in averseness over the course of a single day, inflammation interrupts this process and results in an increased urine odor averseness and an altered volatile composition. These results support the notion that subtle and early cues of sickness may be detected and avoided, thereby complementing the immune system in its role of keeping us alive and healthy

    Multiple pH Regime Molecular Dynamics Simulation for pK Calculations

    Get PDF
    Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper

    Site-directed mutations in the C-terminal extension of human aB-Crystalline affect chaperone function and block amyloid fibril formation

    Get PDF
    Copyright: 2007 Treweek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background. Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including aB-crystallin, play a role in the prevention of protein deposition. Methodology/Principal Findings. A series of site-directed mutants of the human molecular chaperone, aBcrystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of aB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of aB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. Conclusions/Significance. Together, our results highlight the important role of the C-terminal region of aB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify aB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation

    How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins

    Get PDF
    BACKGROUND:Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. beta-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. METHODOLOGY/PRINCIPAL FINDINGS: Here influx of beta-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single beta-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of beta-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. CONCLUSIONS/SIGNIFICANCE: We propose the idea of a molecular "passport" that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections

    Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures

    Get PDF
    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183

    Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    Get PDF
    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis

    On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry

    Get PDF
    The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na+ for H+ ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves

    Reduced Stability and Increased Dynamics in the Human Proliferating Cell Nuclear Antigen (PCNA) Relative to the Yeast Homolog

    Get PDF
    Proliferating Cell Nuclear Antigen (PCNA) is an essential factor for DNA replication and repair. PCNA forms a toroidal, ring shaped structure of 90 kDa by the symmetric association of three identical monomers. The ring encircles the DNA and acts as a platform where polymerases and other proteins dock to carry out different DNA metabolic processes. The amino acid sequence of human PCNA is 35% identical to the yeast homolog, and the two proteins have the same 3D crystal structure. In this report, we give evidence that the budding yeast (sc) and human (h) PCNAs have highly similar structures in solution but differ substantially in their stability and dynamics. hPCNA is less resistant to chemical and thermal denaturation and displays lower cooperativity of unfolding as compared to scPCNA. Solvent exchange rates measurements show that the slowest exchanging backbone amides are at the β-sheet, in the structure core, and not at the helices, which line the central channel. However, all the backbone amides of hPCNA exchange fast, becoming undetectable within hours, while the signals from the core amides of scPCNA persist for longer times. The high dynamics of the α-helices, which face the DNA in the PCNA-loaded form, is likely to have functional implications for the sliding of the PCNA ring on the DNA since a large hole with a flexible wall facilitates the establishment of protein-DNA interactions that are transient and easily broken. The increased dynamics of hPCNA relative to scPCNA may allow it to acquire multiple induced conformations upon binding to its substrates enlarging its binding diversity
    • …
    corecore