54 research outputs found
Recommended from our members
On the clustering of winter storm loss events over Germany
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications
Recommended from our members
Characterisation of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia
Intense extra-tropical cyclones are often associated with strong winds, heavy precipitation and socio-economic impacts. Over southwestern Europe, such storms occur less often, but still cause high economic losses. We characterise the largescale atmospheric conditions and cyclone tracks during the top-100 potential losses over Iberia associated with wind events. Based on 65 years of reanalysis data,events are classified into four groups: (i) cyclone tracks crossing over Iberia on the event day (“Iberia”), (ii) cyclones crossing further north, typically southwest of the British Isles (“North”), (iii) cyclones crossing southwest to northeast near the northwest tip of Iberia (“West”), and (iv) so called “Hybrids”, characterised by a strong pressure gradient over Iberia due to the juxtaposition of low and high pressure centres. Generally, “Iberia” events are the most frequent (31% to 45% for top-100 vs.top-20), while “West” events are rare (10% to 12%). 70% of the events were primarily associated with a cyclone. Multi-decadal variability in the number of events is identified. While the peak in recent years is quite prominent, other comparably stormy periods occurred in the 1960s and 1980s. This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes strong multi-decadal variability
Recommended from our members
Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions
Under particular large-scale atmospheric conditions, several windstorms may affect Europe within a short time period. The occurrence of such cyclone families leads to large socioeconomic impacts and cumulative losses. The serial clustering of windstorms is analyzed for the North Atlantic/western Europe. Clustering is quantified as the dispersion (ratio variance/mean) of cyclone passages over a certain area. Dispersion statistics are derived for three reanalysis data sets and a 20-run European Centre Hamburg Version 5 /Max Planck Institute Version–Ocean Model Version 1 global climate model (ECHAM5/MPI-OM1 GCM) ensemble. The dependence of the seriality on cyclone intensity is analyzed. Confirming previous studies, serial clustering is identified in reanalysis data sets primarily on both flanks and downstream regions of the North Atlantic storm track. This pattern is a robust feature in the reanalysis data sets. For the whole area, extreme cyclones cluster more than nonextreme cyclones. The ECHAM5/MPI-OM1 GCM is generally able to reproduce the spatial patterns of clustering under recent climate conditions, but some biases are identified. Under future climate conditions (A1B scenario), the GCM ensemble indicates that serial clustering may decrease over the North Atlantic storm track area and parts of western Europe. This decrease is associated with an extension of the polar jet toward Europe, which implies a tendency to a more regular occurrence of cyclones over parts of the North Atlantic Basin poleward of 50°N and western Europe. An increase of clustering of cyclones is projected south of Newfoundland. The detected shifts imply a change in the risk of occurrence of cumulative events over Europe under future climate conditions
Recommended from our members
Robustness of serial clustering of extratropical cyclones to the choice of tracking method
Cyclone clusters are a frequent synoptic feature in the Euro-Atlantic area. Recent studies have 24 shown that serial clustering of cyclones generally occurs on both flanks and downstream 25 regions of the North Atlantic storm track, while cyclones tend to occur more regulary on the 26 eastern side of the North Atlantic basin near Newfoundland. This study explores the 27 sensitivity of serial clustering to the choice of cyclone tracking method using cyclone track 28 data from 15 methods derived from ERA-Interim data (1979-2010). Clustering is estimated by 29 the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid 30 point over the Euro-Atlantic area. The mean number of cyclone counts and their variance are 31 compared between methods, revealing considerable differences, particularly for the latter. 32 Results show that all different tracking methods qualitatively capture similar large-scale 33 spatial patterns of underdispersion / overdispersion over the study region. The quantitative 34 differences can primarily be attributed to the differences in the variance of cyclone counts 35 between the methods. Nevertheless, overdispersion is statistically significant for almost all 36 methods over parts of the Eastern North Atlantic and Western Europe, and is therefore 37 considered as a robust feature. The influence of the North Atlantic Oscillation on cyclone 38 clustering displays a similar pattern for all tracking methods, with one maximum near Iceland 39 and another between the Azores and Iberia. The differences in variance between methods are 40 not related with different sensitivities to the NAO, which can account to over 50% of the 41 clustering in some regions. We conclude that the general features of underdispersion / 42 overdispersion of extra-tropical cyclones over the North Atlantic and Western Europe is 43 robust to the choice of tracking method. The same is true for the influence of the North 44 Atlantic Oscillation on cyclone dispersion
Recommended from our members
Loss potentials associated with European windstorms under future climate conditions
Possible changes in the frequency and intensity of windstorms under future climate conditions during the 21st century are investigated based on an ECHAM5 GCM multi-scenario ensemble. The intensity of a storm is quantified by the associated estimated loss derived with using an empirical model. The geographical focus is ‘Core Europe’, which comprises countries of Western Europe. Possible changes of losses are analysed by comparing ECHAM5 GCM data for recent (20C, 1960 to 2000) and future climate conditions (B1, A1B, A2; 2060 to 2100), each with 3 ensemble members. Changes are quantified using both rank statistics and return periods (RP) estimated by fitting an extreme value distribution using the peak over threshold method to potential storm losses. The estimated losses for ECHAM5 20C and reanalysis events show similar statistical features in terms of return periods. Under future climate conditions, all climate scenarios show an increase in both frequency and magnitude of potential losses caused by windstorms for Core Europe. Future losses that are double the highest ECHAM5 20C loss are identified for some countries. While positive changes of ranking are significant for many countries and multiple scenarios, significantly shorter RPs are mostly found under the A2 scenario for return levels correspondent to 20 yr losses or less. The emergence time of the statistically significant changes in loss varies from 2027 to 2100. These results imply an increased risk of occurrence of windstorm-associated losses, which can be largely attributed to changes in the meteorological severity of the events. Additionally, factors such as changes in the cyclone paths and in the location of the wind signatures relative to highly populated areas are also important to explain the changes in estimated losses
Transitioning to molecular diagnostics in pediatric high-grade glioma: Experiences with the 2016 WHO classification of CNS tumors
BACKGROUND:
Pediatric neuro-oncology was profoundly changed in the wake of the 2016 revision of the WHO Classification of Tumors of the Central Nervous System. Practitioners were challenged to quickly adapt to a system of tumor classification redefined by molecular diagnostics.
METHODS:
We designed a 22-question survey studying the impact of the revised WHO classification on pediatric high-grade glioma. The survey collected basic demographics, general attitudes, issues encountered, and opinions on pediatric subtypes. Participant answers were analyzed along socioeconomic lines utilizing the human development index (HDI) of the United Nations and membership in the group of seven (G7) world economic forum.
RESULTS:
Four hundred and sixty-five participants from 53 countries were included, 187 pediatric neurooncologists (40%), 160 neuropathologists (34%), and 118 other experts (26%). When asked about pediatric high-grade glioma entities, participants from very high development countries preferred treating a patient based on genetic findings. Participants from high and medium development countries indicated using traditional histology and tumor location as mainstays for therapeutic decisions. Non-G7 countries tended to regard the introduction of molecularly characterized tumor entities as a problem for daily routine due to lack of resources.
CONCLUSIONS:
Our findings demonstrate an overall greater reliance and favorability to molecular diagnostics among very high development countries. A disparity in resources and access to molecular diagnostics has left some centers unable to classify pediatric high-grade glioma per the WHO classification. The forthcoming edition should strain to abate disparities in molecular diagnostic availability and work toward universal adaptation
Pediatric high-grade gliomas and the WHO CNS Tumor Classification - Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates
Background: The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG). Methods: We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists. Results: 465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri. Conclusions: Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact
Recommended from our members
Projections of global warming-induced impacts on winter storm losses in the German private household sector
We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971–2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6–35 % for 2011–2040, of 20–30 % for 2041–2070, and of 40–55 % for 2071–2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses
HGG-16. Pediatric-type diffuse high-grade glioma of methylation-based RTK2A and RTK2B subclasses present distinct radiological and histomolecular features [Abstract]
BACKGROUND
Diffuse pediatric-type high-grade gliomas (pedHGG), H3-wildtype and IDH-wildtype, encompass three main methylome-based subclasses: pedHGG-MYCN, -RTK1A/B/C, and -RTK2A/B. Since their first description in 2017, tumors of pedHGG-RTK2A/B have not been further characterized and their clinical significance is unknown.
METHODS
A not yet published cases series on pedHGG with a gliomatosis cerebri (GC) growth pattern showed an increased incidence of pedHGG-RTK2A/B (n=18/40). We assembled a cohort of 14 additional methylation-based pedHGG-RTK2A/B tumors and pooled them with the GC tumors providing centrally reviewed radiological, histological, and molecular characterization.
RESULTS
Our cohort of 32 pedHGG-RTK2A/B tumors consisted of 25 RTK2A (78%) and seven RTK2B (22%) cases. The median age was 11.6 years (4-17) with an overall survival of 15.9 months (interquartile range 12.1-25.8). Of the additional unselected cases with available imaging (10 of 14), seven showed a GC phenotype at diagnosis or follow-up. In addition, pedHGG-RTK2B tumors exhibited bithalamic involvement (6/7, 86%). Histopathology confirmed a diffuse glial neoplasm in all cases with prominent angiocentric features in both subclasses. Most tumors (24/29, 83%) diffusely expressed EGFR, notably with a focal perivascular enhancement. Cells of pedHGG-RTK2A lacked Olig2 expression, whereas 43% (3/7) of pedHGG-RTK2B expressed Olig2. Loss of ATRX expression occurred in four pedHGG-RTK2B samples (57%). In sequencing analyses (RTK2A: n=18, RTK2B: n=5), EGFR alterations (n=15/23, 65%; predominantly point mutations) were commonly found in both subclasses. Mutations in BCOR (n=14/18, 78%), SETD2 (n=7/18, 39%), and TERT promoter (n=6/18, 33%) occurred exclusively in pedHGG-RTK2A tumors, while pedHGG-RTK2B tumors were enriched for TP53 mutations (4/5, 80%).
CONCLUSIONS
In conclusion, genotype-phenotype correlations in a multicenter series of pedHGG-RTK2A/B tumors revealed a highly diffuse-infiltrating tumor frequently exhibiting a GC phenotype. The two subclasses share particular histomolecular features (EGFR alterations, angiocentric pattern), whereas they differ in specific characteristics (pedHGG-RTK2A: Olig2 negativity, BCOR and SETD2 mutations; pedHGG-RTK2B: ATRX and TP53 alterations)
Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.
Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890
- …