275 research outputs found

    Bilinear modeling and nonlinear estimation

    Get PDF
    New methods are illustrated for online nonlinear estimation applied to the lateral deflection of an elastic beam on board measurements of angular rates and angular accelerations. The development of the filter equations, together with practical issues of their numerical solution as developed from global linearization by nonlinear output injection are contrasted with the usual method of the extended Kalman filter (EKF). It is shown how nonlinear estimation due to gyroscopic coupling can be implemented as an adaptive covariance filter using off-the-shelf Kalman filter algorithms. The effect of the global linearization by nonlinear output injection is to introduce a change of coordinates in which only the process noise covariance is to be updated in online implementation. This is in contrast to the computational approach which arises in EKF methods arising by local linearization with respect to the current conditional mean. Processing refinements for nonlinear estimation based on optimal, nonlinear interpolation between observations are also highlighted. In these methods the extrapolation of the process dynamics between measurement updates is obtained by replacing a transition matrix with an operator spline that is optimized off-line from responses to selected test inputs

    Sliding control of pointing and tracking with operator spline estimation

    Get PDF
    It is shown how a variable structure control technique could be implemented to achieve precise pointing and good tracking of a deformable structure subject to fast slewing maneuvers. The correction torque that has to be applied to the structure is based on estimates of upper bounds on the model errors. For a rapid rotation of the deformable structure, the elastic response can be modeled by oscillators driven by angular acceleration, and where stiffness and damping coefficients are also angular velocity and acceleration dependent. By transforming this slew-driven elastic dynamics into bilinear form (be regarding the vector made up of the angular velocity, squared angular velocity and angular acceleration components, which appear in the coefficients as the input to the deformation dynamics), an operator spline can be constructed, that gives a low order estimate of the induced disturbance. Moreover, a worst case error bound between the estimated deformation and the unknown exact deformation is also generated, which can be used where required in the sliding control correction

    PHP62 VALUE OF CONGRESS ABSTRACTS OF COST-EFFECTIVENESS STUDIES FOR DECISION MAKERS

    Get PDF

    West Nile virus meningoencephalitis during pregnancy: Case report with MR imaging findings

    Get PDF
    AbstractMR imaging findings of West Nile virus meningoencephalitis during pregnancy are unknown. We report the first case of serologically proved West Nile virus meningoencephalitis complicating pregnancy with MRI findings. MR imaging of the brain revealed abnormal hyperintensity in the periventricular white matter near the left frontal horn and insular left lobe on fluid-attenuated inversion recovery and T2-weighted images. Evolution was favorable, and no obvious fetal consequences of infection were noted after birth. Recognition of the MR imaging appearance of this entity is important because of the expanding epidemic

    Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production

    Get PDF
    Background: Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and the growth rate were the main selection parameters. The present study evaluates the performance of native microalgae strains in semi-continuous mode, considering the suitability of the algal-derived fatty acid composition and the saponifiable lipid productivity as selection criteria for microalgal fuel production. Evaluation of the photosynthetic performance and the robustness of the selected strain under outdoor conditions was conducted to assess its capability to grow and tolerate harsh environmental growth conditions. Results: In this study, five native microalgae strains from Tunisia (one freshwater and four marine strains) were isolated and evaluated as potential raw material to produce biofuel. Firstly, molecular identification of the strains was performed. Then, experiments in semi-continuous mode at different dilution rates were carried out. The local microalgae strains were characterized in terms of biomass and lipid productivity, in addition to protein content, and fatty acid profile, content and productivity. The marine strain Chlorella sp. showed, at 0.20 1/day dilution rate, lipid and biomass productivities of 35.10 mg/L day and 0.2 g/L day, respectively. Moreover, data from chlorophyll fluorescence measurements demonstrated the robustness of this strain as it tolerated extreme outdoor conditions including high (38 ° C) and low (10 ° C) temperature, and high irradiance (1600 µmol/m2 s). Conclusions: Selection of native microalgae allows identifying potential strains suitable for use in the production of biofuels. The selected strain Chlorella sp. demonstrated adequate performance to be scaled up to outdoor conditions. Although experiments were performed at laboratory conditions, the methodology used in this paper allows a robust evaluation of microalgae strains for potential market applications.This study was supported by the Marine Microalgae Biotechnology Group at the University of Almer'a (BIO 173) and the Campus de Excelencia Internacional Agroalimentario (ceiA3) within the joint framework of supervised theses between the University of Almeria, Spain and the University of Sfax, Tunisia.Scopu

    Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production

    Get PDF
    This paper focuses on the selection of native microalgae strains suitable for wastewater treatment and biofuel production. Four Chlorophyceae strains were isolated from North-eastern Tunisia. Their performances were compared in continuous mode at a 0.3 1/day dilution rate. The biomass productivity and nutrient removal capacity of each microalgae strain were studied. The most efficient strain was identified as Scenedesmus sp. and experiments at different dilution rates from 0.2 to 0.8 1/day were carried out. Maximal biomass productivity of 0.92 g/L·day was obtained at 0.6 1/day. The removal of chemical oxygen demand (COD), ammonium and phosphorus was in the range of 92-94%, 61-99% and 93-99%, respectively. Carbohydrates were the major biomass fraction followed by lipids and then proteins. The saponifiable fatty acid content was in the 4.9-13.2% dry biomass range, with more than 50% of total fatty acids being composed of saturated and monosaturated fatty acids

    Detecting failure of a material handling system through a cognitive twin

    Get PDF
    This paper describes a methodology for developing a digital twin (DT) based on a rich semantic model and principles of system engineering. The aim is to provide a general model of digital twins (DT) that can improve decision making based on semantic reasoning on real-time system monitoring. The methodology has been tested on a laboratory pilot plant that acts as a material handling system. The key contribution of this research is to propose a generic information model for DT using foundational ontology and principles of systems engineering. The efficacy of the proposed methodology is demonstrated by the automatic detection of a component level failure using semantic reasoning

    Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

    Get PDF
    The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203
    • …
    corecore