581 research outputs found

    Entanglement scaling of excited states in large one-dimensional many-body localized systems

    Get PDF
    We study the properties of excited states in one-dimensional many-body localized (MBL) systems using a matrix product state algorithm. First, the method is tested for a large disordered non-interacting system, where for comparison we compute a quasi-exact reference solution via a Monte Carlo sampling of the single-particle levels. Thereafter, we present extensive data obtained for large interacting systems of L~100 sites and large bond dimensions chi~1700, which allows us to quantitatively analyze the scaling behavior of the entanglement S in the system. The MBL phase is characterized by a logarithmic growth (L)~log(L) over a large scale separating the regimes where volume and area laws hold. We check the validity of the eigenstate thermalization hypothesis. Our results are consistent with the existence of a mobility edge

    Thermal conductivity of the one-dimensional Fermi-Hubbard model

    Get PDF
    We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interactions and moreover, we compute its filling dependence at infinite temperature. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultra-cold quantum gas experiments and for transport measurements with quasi-one dimensional materials

    Transport properties of the one-dimensional Hubbard model at finite temperature

    Full text link
    We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is two-fold: First, we compute both the charge and the spin current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity sigma(omega) in presence of small integrability-breaking next-nearest neighbor interactions (the extended Hubbard model). The DC conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a testbed for our numerics, we compute sigma(omega) for the integrable XXZ spin chain in its gapped phase

    Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy

    Full text link
    Using low-temperature scanning tunneling spectroscopy applied to the Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe electron-electron interaction effects in the quantum Hall regime. The 2DES is decoupled from p-doped bulk states and exhibits spreading resistance within the insulating quantum Hall phases. In quantitative agreement with calculations we find an exchange enhancement of the spin splitting. Moreover, we observe that both the spatially averaged as well as the local density of states feature a characteristic Coulomb gap at the Fermi level. These results show that electron-electron interaction effects can be probed down to a resolution below all relevant length scales.Comment: supplementary movie in ancillary file

    Transport in quasiperiodic interacting systems: from superdiffusion to subdiffusion

    Full text link
    Using a combination of numerically exact and renormalization-group techniques we study the nonequilibrium transport of electrons in an one-dimensional interacting system subject to a quasiperiodic potential. For this purpose we calculate the growth of the mean-square displacement as well as the melting of domain walls. While the system is nonintegrable for all studied parameters, there is no on finite region default of parameters for which we observe diffusive transport. In particular, our model shows a rich dynamical behavior crossing over from superdiffusion to subdiffusion. We discuss the implications of our results for the general problem of many-body localization, with a particular emphasis on the rare region Griffiths picture of subdiffusion.Comment: 6 pages, 5 figures. A more detailed analysis of the dynamical exponents extraction and discussion of the relevant times. Adds a log-derivative for the FRG sectio

    Tuning the Josephson current in carbon nanotubes with the Kondo effect

    Full text link
    We investigate the Josephson current in a single wall carbon nanotube connected to superconducting electrodes. We focus on the parameter regime in which transport is dominated by Kondo physics. A sizeable supercurrent is observed for odd number of electrons on the nanotube when the Kondo temperature Tk is sufficiently large compared to the superconducting gap. On the other hand when, in the center of the Kondo ridge, Tk is slightly smaller than the superconducting gap, the supercurrent is found to be extremely sensitive to the gate voltage Vbg. Whereas it is largely suppressed at the center of the ridge, it shows a sharp increase at a finite value of Vbg. This increase can be attributed to a doublet-singlet transition of the spin state of the nanotube island leading to a pi shift in the current phase relation. This transition is very sensitive to the asymmetry of the contacts and is in good agreement with theoretical predictions.Comment: 5 pages, 4 figure

    Magnetic properties of a capped kagome molecule with 60 quantum spins

    Get PDF
    We compute ground-state properties of the isotropic, antiferromagnetic Heisenberg model on the sodalite cage geometry. This is a 60-spin spherical molecule with 24 vertex-sharing tetrahedra which can be regarded as a molecular analogue of a capped kagome lattice and which has been synthesized with high-spin rare-earth atoms. Here, we focus on the S=1/2S=1/2 case where quantum effects are strongest. We employ the SU(2)-symmetric density-matrix renormalization group (DMRG). We find a threefold degenerate ground state that breaks the spatial symmetry and that splits up the molecule into three large parts which are almost decoupled from each other. This stands in sharp contrast to the behaviour of most known spherical molecules. On a methodological level, the disconnection leads to "glassy dynamics" within the DMRG that cannot be targeted via standard techniques. In the presence of finite magnetic fields, we find broad magnetization plateaus at 4/5, 3/5, and 1/5 of the saturation, which one can understand in terms of localized magnons, singlets, and doublets which are again nearly decoupled from each other. At the saturation field, the zero-point entropy is S=ln(182)5.2S=\ln(182)\approx 5.2 in units of the Boltzmann constant

    Spin and thermal conductivity of quantum spin ladders

    Get PDF
    We study the spin and thermal conductivity of spin-1/2 ladders at finite temperature. This is relevant for experiments with quantum magnets. Using a state-of-the-art density matrix renormalization group algorithm, we compute the current autocorrelation functions on the real-time axis and then carry out a Fourier integral to extract the frequency dependence of the corresponding conductivities. The finite-time error is analyzed carefully. We first investigate the limiting case of spin-1/2 XXZ chains, for which our analysis suggests non-zero dc-conductivities in all interacting cases irrespective of the presence or absence of spin Drude weights. For ladders, we observe that all models studied are normal conductors with no ballistic contribution. Nonetheless, only the high-temperature spin conductivity of XX ladders has a simple diffusive, Drude-like form, while Heisenberg ladders exhibit a more complicated low-frequency behavior. We compute the dc spin conductivity down to temperatures of the order of T~0.5J, where J is the exchange coupling along the legs of the ladder. We further extract mean-free paths and discuss our results in relation to thermal conductivity measurements on quantum magnets

    Many-body localization and the area law in two dimensions

    Get PDF
    We study the high-energy phase diagram of a two-dimensional spin-12\frac{1}{2} Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy for systems of up to 30×730\times7 lattice sites. We demonstrate the existence of a finite many-body localized phase for large disorder strength WW for which the eigenstate thermalization hypothesis is violated. Moreover, we show explicitly that the area law holds for excited states in this phase and determine an estimate for the critical WcW_{\rm{c}} where the transition to the ergodic phase occurs.Comment: 5 pages, 5 figure
    corecore