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Abstract

We compute ground-state properties of the isotropic, antiferromagnetic Heisenberg
model on the sodalite cage geometry. This is a 60-spin spherical molecule with 24 vertex-
sharing tetrahedra which can be regarded as a molecular analogue of a capped kagome
lattice and which has been synthesized with high-spin rare-earth atoms. Here, we fo-
cus on the S = 1/2 case where quantum effects are strongest. We employ the SU(2)-
symmetric density-matrix renormalization group (DMRG). We find a threefold degener-
ate ground state that breaks the spatial symmetry and that splits up the molecule into
three large parts which are almost decoupled from each other. This stands in sharp con-
trast to the behaviour of most known spherical molecules. On a methodological level,
the disconnection leads to “glassy dynamics” within the DMRG that cannot be targeted
via standard techniques. In the presence of finite magnetic fields, we find broad mag-
netization plateaus at 4/5, 3/5, and 1/5 of the saturation, which one can understand
in terms of localized magnons, singlets, and doublets which are again nearly decoupled
from each other. At the saturation field, the zero-point entropy is S = ln(182) ≈ 5.2 in
units of the Boltzmann constant.
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1 Introduction

Interacting quantum spins have a tendency to form singlet states, which have no preferred di-
rection and minimize the antiferromagnetic exchange energy. This is captured by the Heisen-
berg Hamiltonian

H =
∑

i< j

Ji jSi · S j , (1)

where Ji j are the exchange couplings among L spins, and Si =
�

S x
i , S y

i , Sz
i

�

is a vector of
spin-S operators. This singlet formation is frustrated on non-bipartite lattices, among which
vertex-sharing triangular geometries (kagome-type) and vertex-sharing tetrahedral geometries
(pyrochlore-type) stand out as particularly complicated and interesting. Such systems can be
roughly grouped into (i) 1D chains, (ii) 2D/3D lattices, and (iii) finite molecules. Among the
molecules, ferric wheels are analogous to 1D chains or ladders [1,2], while hollow cages [3–
10] (such as the Platonic or Archimedean solids) are analogous to 2D planes, albeit with a
spherical topology.

In this work, we focus on the physics of quantum spins in molecular systems. One of the
most well-studied molecules is the icosidodecahedron, a molecular analogue of the kagome lat-
tice [3,5–9]. This 30-site spherical cage can be formed by transition metal ions V4+, Cr3+, Fe3+

in the Keplerate molecules [11–13] with S = 1/2, 3/2, and 5/2, respectively. Recently, a cage-
like molecule with L = 60 spins was synthesized that is based on vertex-sharing tetrahedra [14]
and that can be classified as a molecular analogue of a capped kagome compound [15–17] (see
Fig. 1). The addition of the “caps” promotes the triangles to tetrahedra and is a step towards
the 3D pyrochlore lattice.

Due to the high frustration and three-dimensionality of the pyrochlore lattice, not much
is known about the ground state of the isotropic Heisenberg model on this geometry. Nei-
ther the value of the ground-state energy nor the existence of a spin gap have been reliably
estimated [18, 19] despite a wealth of approaches. By using extrapolation schemes from low
to high temperatures, a gapless spectrum and a value for the energy has been proposed re-
cently [20]. Exact diagonalization reaches its limits with about 36 sites [21,22] and finds a dis-
ordered ground state. On the other hand, approximate results (often based on weakening the
intertetrahedra coupling J ′ to obtain a small expansion parameter) indicate lattice symmetry
breaking [23–27]. However, such methods may not properly take into account the competi-
tion between different phases. Recent progress involves the application of the pseudofermion
functional renormalization group [18], where such competition is thought to be treated more
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faithfully and which again points to a disordered ground state. An approach coming from
the high-temperature region comparing various imaginary-time propagation techniques [19]
indicates that much of the entropy is unreleased before low temperatures can be reached,
pointing towards a high density of states close to T = 0. One should note that in contrast
to the 3D pyrochlore lattice, a 60-spin molecule can be treated accurately using the density-
matrix renormalization group (DMRG), while still having a nontrivially large size.

In experimental realizations of the capped kagome molecule [14], the spin centres are Gd
atoms with S = 7/2 (Dy, Er and Y were also used [28,29]). This allows for an approximation
with classical spins, and it was shown that the system can be described well by the classical
isotropic Heisenberg model [14]. While the absence of a strong anisotropy prevents Ising-like
ordering and is a prerequisite to observe quantum effects, such effects are washed out by the
large value of S. This motivates us to look at the same geometry for the case of S = 1/2, where
quantum fluctuations are the strongest.

There are several scenarios for the nature of the ground state of such a frustrated spin
system. One possibility is an ordered state which breaks the spin symmetry and which is found,
e.g., for the triangular lattice [30–33]. Another possibility is a “valence-bond solid” (VBS) in
which translational invariance is broken by a particular pair-singlet covering. However, spin
symmetry remains unbroken, so that the total spin Stot obtained from




S2
tot

�

=
∑

i j




Si · S j

�

= Stot (Stot + 1) (2)

is zero. A VBS state tends to appear for fine-tuned parameters or very small systems [34–37],
though there are notable exceptions [38]. Yet another possibility is that the ground state is
highly degenerate due to the exponentially large number of combinations to distribute pair-
singlets in 2D and 3D [39]. However, this degeneracy tends to split into a unique “liquid-like”
ground state with exponentially decreasing correlations and many low-lying singlet states. The
latter case is what is found for frustrated polyhedra, such as the icosahedron (L = 12) [4], the
cuboctahedron (L = 12) [5, 6], the dodecahedron (L = 20) [4], and the icosidodecahedron
(L = 30) [3, 5–9]. They have nondegenerate ground states that transform according to the
trivial irreducible representation A1g of the icosahedral group Ih or the octahedral group Oh;
as well as a number of low-lying Stot = 0 states that grows quickly with the size.

In this paper, we will show that unlike these smaller polyhedra, the ground state of our
large capped-kagome molecule is not given by the trivial irreducible representation class A,
but rather by T . Because T is three-dimensional, this makes the ground state threefold degen-
erate, which goes hand in hand with a spatial symmetry breaking, as we argue below. Three
orthonormal basis states can be conceptualized as follows: The two poles and a belt around
the equator of the sphere nearly completely decouple from each other and the rotational sym-
metry is reduced to rotations about only one coordinate axis. The different ground states
are thus related by a global reshuffling of the spins of the whole molecule which cannot be
achieved with local operations in reasonable time and which leads to a “glassy” behaviour for
the DMRG algorithm (which hinges on local updates). To the best of our knowledge, such a
state has not been found elsewhere and is thus a new addition to the list of possible scenarios
for the ground states of frustrated geometries.

After computing the ground state, we analyze the behaviour of several physical quanti-
ties. We demonstrate the existence of localized magnons, resulting in a zero-point entropy of
S = ln (182) kB ≈ 5.2kB per molecule (kB: Boltzmann constant) at the saturation magnetiza-
tion. We observe wide magnetization plateaus at 3/5 and 1/5 of the saturation, which can be
explained by commensurate numbers of spinflips that can form localized confined singlet or
doublet states. This can be seen as a generalization of localized magnons.

3
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C3 axis

C4 axis

Figure 1: Left: Ball-and-stick drawing of the SOD60 molecule with a 4-fold and a
3-fold symmetry axis indicated. Right: Projection on the plane (Schlegel diagram)
using the square orientation. The enumeration of the sites is the result of applying
the Cuthill-McKee compression. Equivalent sites are drawn in the same colour.

2 Geometry

In a recent work, various hollow cages with magnetic centres have been synthesized, the
largest of which has L = 60 spin sites [14]. This cage can be understood by starting with
a rectified truncated octahedron [40]. The truncated octahedron is a well-known Archimedean
solid, while the rectification procedure is a “shaving off” of the vertices of a polytope, such
that the stubs share a vertex. In this case, it results in 8 hexagon faces, 6 square faces and 24
vertex-sharing triangle faces. Furthermore, each of the 24 triangles is “capped” (or “stellated”)
with an additional spin site, forming vertex-sharing tetrahedra. Thus there are 36 “base spins”
residing on the vertices of the polytope and 24 “apex spins” on top of the triangles. These
two layers can also be thought of as a kagome-lattice layer and a triangular-lattice layer. In a
different chemical context, this object is known as a “sodalite cage” [29,41], commonly abbre-
viated as SOD. We thus use the shorthand “SOD60” to refer to this molecule. The geometry is
depicted in Fig. 1.

There are three inequivalent sites which we depict as red, green, and blue balls in Fig. 1: (r)
the apices of the tetrahedra, (g) the vertices bounded by two hexagons and two base triangles,
(b) the vertices bounded by a hexagon, a square and two base triangles.

One finds that there are four inequivalent nearest-neighbour bonds, corresponding to the
connections (r)-(g), (r)-(b), (g)-(b) and (b)-(b). We note that the triangles are isosceles, with
the long edges exceeding the short ones by a factor of

p
6/2≈ 1.22. One can therefore expect

that this leads to slightly different exchange constants J , but as a first approach, we assume
a homogenenous value of J ≡ 1 for all nearest neighbours of the interaction graph Ji j . The
symmetry group of the molecule is Oh (octahedral) and has the irreducible representation
classes A (1), E (2), T (3), where the brackets indicate the multiplicity. More precisely, the
irreducible representations are: A1g , A1u, A2g , A2u, Eg , Eu, T1g , T1u, T2g , T2u. There are three
C4 symmetry axes (as in a cube), as well as four C3 symmetry axes (see Fig. 1).

The maximal distance of the spin-spin correlations is d = 7 and there are 144 nearest-
neighbour bonds.
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We also introduce a new hypothetical cage “SOD20”1, where the capping procedure is
extended to the triangles of the cuboctahedron, resulting in 12 base spins and 8 apex spins
(see Fig. 4). This leads to a system with L = 20 spins, which can be readily solved in the full
Hilbert space by the Lanczos algorithm, while having a similar geometry and also belonging
to Oh. This is useful as a small system that one can compare to SOD60. We are not aware of
the existence of such a structure, but a cuboctahedron where the squares are capped instead
of the triangles does exist as a Fe-based magnetic molecule [42,43].

3 Technical details

In order to find the ground-state wavefunction of the Hamiltonian (1) with Ji j ≡ 1 for the
bonds depicted in Fig. 1, we employ the DMRG algorithm, which provides a highly accurate
way to variationally determine the ground state within the class of matrix-product states [44].
The dimension of the matrices – the so-called bond dimension – is a measure of the entangle-
ment and serves as the key numerical control parameter. The reason why DMRG can tackle
exponentially-large Hilbert spaces is that many ground states are only entangled locally (“area
law”) and can thus be represented faithfully by matrix-product states with a small bond di-
mension. Our code fully exploits the SU(2) spin symmetry [45] of the problem. The maximal
SU(2)-invariant bond dimension is χSU(2) = 7000, which corresponds to an effective bond
dimension of about χ ∼ 30000 − 34000 when SU(2) is not exploited. Convergence of the
algorithm is assessed by computing the energy variance per site

∆E2/L =
�


H2
�

− 〈H〉2
�

/L . (3)

The interaction graph given by Ji j is compressed by applying the Cuthill-McKee algo-
rithm [46], which reduces the graph bandwidth to 16. In physical terms, this corresponds to
the maximal hopping distance on the effective 1D chain geometry that is required by DMRG.
The resulting numbering of the sites is displayed in Fig. 1. We refer to Ref. 10 for a discussion
of the dependence of the results on the numbering. We find that the matrix-product-operator
(MPO) representation of the Hamiltonian can be compressed without losses [47] down to a
maximum size of 23× 20.

4 Degenerate ground state

The left part of Fig. 2 shows the nearest-neighbour spin-spin correlations in the ground state
obtained by DMRG. Evidently, the ground state is symmetry-broken: Instead of the three C4
rotational symmetry axes that pierce the square faces, we are only left with one, while the
others are reduced to C2 axes. The C3 symmetries along the axes that pierce the hexagons
are all completely broken. This suggests a threefold degeneracy according to the irreducible
representation T . We thus expect two other ground states to exist that have similarly broken
symmetries along the other two coordinate axes.

After computing one member
�

�E0

�

of the ground-state manifold, the full multiplet can be
obtained within the DMRG by setting

H ′ = H + Ep

�

�E0

�


E0

�

� , (4)

where Ep is a sufficiently high energy penalty. The ground state of H ′ is then a different
member of the multiplet (or the first excited state in case of a nondegenerate ground state).
We find, however, that this technique fails in our case even though we perform two-site sweeps

1We note that SOD20 is distinct from the Gd20 system of Ref. 14, which is just a dodecahedron.
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Figure 2: Nearest-neighbour spin-spin correlations



Si · S j

�

for the three symmetry-
broken ground states. The dotted lines indicate where parts of the molecule nearly
decouple.

and apply standard methods of adding fluctuations [44]. The algorithm always converges to
one of many low-lying singlet states whose energy is larger than E0. We will investigate the
physical reason for this failure in the next section.

To obtain the full multiplet, we need to proceed in a different way. We explicitly perform
a spatial rotation of the state

�

�E0

�

such that one ends up with a state that should correspond
to one of the other two members of the ground-state manifold. On a technical level, this
can be achieved by a sequence of transpositions (see App. A for details). For S = 1/2, each
transposition is carried out by applying the permutation operator [48]

P12 = 2S1 · S2 +
1
2

. (5)

Acting with P12 on an antisymmetric pair-singlet (symmetric pair-triplet) state gives −1 (+1)
as an eigenvalue. We find that 45 transpositions are necessary for a rotation by 90 degrees.
Such a large product of operators cannot be easily handled in an MPO representation. The
bond dimension increases after each transposition, which makes truncations necessary and
introduces errors. The energy of the rotated state thus becomes significantly higher than that
of the ground state. However, the result can be used as a starting guess for another DMRG
ground-state calculation governed by H, which allows us to determine the ground-state man-
ifold

�

�E(a)0

�

, a = 0, 1,2, to a satisfactory accuracy. The three ground states are orthogonal to

about



E(a)0

�

�E(b)0

�

= O
�

10−5
�

(a 6= b), and the energy per spin agrees within four digits (see
Tab. 1). The resulting spin-spin correlations are presented in the central and right part of
Fig. 2, where the other two expected symmetry axes are now apparent. Averaging over the
spin-spin correlations




Si · S j

�

=
1
3

2
∑

a=0




E(a)0

�

�Si · S j

�

�E(a)0

�

, (6)

we find that the spatial symmetries are restored, which is shown in Fig. 3. In total, this provides
conclusive evidence for the existence of a degenerate, symmetry-broken ground state2. We
stress that this is not an artifact of the numerical method: Once the state is well-approximated
by a matrix-product state (which is ensured by a small energy variance), the breaking of the

2In principle, one can determine which irreducible representation (T1g , T2g , T1u, or T2u) is associated with the
ground-state manifold by computing the corresponding characters. This requires the evaluation of expectation
values




E(a)0

�

�C
�

�E(a)0

�

, where C represents a particular rotation or spatial inversion. Since C is either a very large
MPO or a product of many MPOs, we find that such a calculation is not feasible due to the prohibitively large bond
dimension.
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Table 1: Total energy and energy per spin of the three symmetry-broken ground
states, from which E0/L = −0.431(7) can be estimated. The last column shows the
energy variance per site, Eq. (3).

a E E/L ∆E2/L

0 -25.900473 -0.43167 5.6 · 10−5

1 -25.895744 -0.43160 3.6 · 10−4

2 -25.897953 -0.43163 2.1 · 10−4

Table 2: Average of the spin-spin correlations for the inequivalent bonds via Eq. (6).
The errors are given by the standard deviation of the distribution over the bonds, and
the colour labels correspond to the coloured sites in Fig. 1.

Bond b 〈S · S〉b
red-green −0.3241± 0.0094
red-blue −0.1804± 0.0060
green-blue −0.0798± 0.0029
blue-blue −0.2345± 0.0073

spatial symmetry seen in Fig. 2 is the smoking-gun evidence for a ground-state degeneracy,
and constructing the full multiplet serves as an additional corroboration.

We remark that symmetry breaking has to be taken with the usual caveat for finite systems:
For finite temperatures, the free energy of a symmetry-broken system has degenerate minima
with energy barriers between them. If the system is initially confined to one minimum, it has
some probability to tunnel to another one, as long as the barrier remains finite, so that the
symmetry breaking is not persistent. In the thermodynamic limit, the barrier becomes infinite
and the system is perfectly dynamically isolated. For a finite system, this dynamical isolation
is only approximate, but the isolation time should become large for large systems (as we have
here), as well as for sufficiently small temperatures.

Figure 3: Left: An average of the nearest-neighbour spin-spin correlations across the
three ground states via Eq. (6) restores the spatial symmetry. Right: Neighbourhood
of a tetrahedron for reference. The colour conventions are as in Fig. 1.

7

https://scipost.org
https://scipost.org/SciPostPhys.12.5.143


SciPost Phys. 12, 143 (2022)

5 Nearly disconnected subsystems

The physical reason behind the failing of the projection technique in Eq. (4) becomes apparent
when examining the spin-spin correlations in Fig. 2 more closely. The dotted lines intersect
the bonds where the correlations are very small, around −0.027 for the red-blue bonds and
−0.0076 for the blue-green bonds. From this one can see that the molecule breaks up into
three nearly decoupled parts, 16 spins on the north and south pole, respectively, as well as 28
spins on a belt along the equator.

There are some ways to further characterize this behaviour quantitatively: For example,
calculating the total spin of the decoupled parts, we find




S2
tot

�

≈ 0.15 for the 16-spin clusters
and




S2
tot

�

≈ 0.3 on the 28-spin cluster, indicating that these subsystems are themselves almost
singlet states. Furthermore, by computing the ground-state energies of the two poles and the
equator separately, we find [2E0(pole) + E0(equator)]/L = −0.4294, or about 99.5% of the
exact energy density.

This phenomenology is reminiscent of a VBS state. However, the decoupled parts are not
just pairs of sites, but large subsystems which are positioned at different locations for each
member of the ground-state manifold. Hence, two different members of the ground-state
manifold can only be connected by a global rearrangement of basically all the spins of the
system. It now stands to reason that this is difficult to achieve with local DMRG updates.
Instead, the approach yields local excitations of the disconnected parts. This is similar to what
is usually called “glassy” behaviour: While a state of lower energy exists, the algorithm is
frozen and has trouble finding it with only local updates and with local interactions. Such
behaviour also underlies the anisotropic ferromagnetic Ising model on the pyrochlore lattice
(commonly known as “spin ice”): Theory predicts an extensive ground-state degeneracy due
to the strong frustration, which contradicts the third law of thermodynamics. One thus expects
that a small perturbation will break the degeneracy and prefer a certain configuration, yet the
degeneracy is also measured experimentally. The reason seems to be that approaching the true
ground state requires a large number of spin flips, which is improbable and does not happen
on the experimental timescale [49]. This leaves the system trapped in various local minima,
similar to how the DMRG algorithm is trapped when trying to solve Eq. (4).

We might in fact also compare the situation with intrinsic topological order, which is found
for the toric code model or for quantum dimer models in 2D [49–52]. In such a state, the
ground-state degeneracy depends on the topology of the space the system is confined to, and
each member of the ground-state manifold has a distinct winding number. This winding num-
ber is preserved exactly and cannot be changed by the Hamiltonian. In our case, the discon-
nection is only approximate, i.e., connecting the ground states is difficult in practice by a local
Hamiltonian and only with local updates.

We point out that a symmetry-broken ground state with nearly disconnected parts only
appears for a system that is large enough and thus constitutes a many-body effect. Figure 4
shows the nearest-neighbour spin-spin correlations of the smaller SOD20 molecule, which can
be solved using exact diagonalization. We find a unique ground state with E0/L = −0.43440
with no broken symmetries.

Finally, we remark that exactly confined states are also known from the solution of the
tight-binding Hamiltonian on the Penrose lattice [53,54], which is, however, bipartite.

5.1 Nearest-neighbour valence bond picture

One attempt to make sense of interacting quantum spins is the nearest-neighbour valence
bond picture [55] (NNVB), where one restricts the Hilbert space to singlet pairs between near-
est neighbours and seeks the solution as a superposition of these. In particular, a resonance
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Figure 4: Left: Ball-and-stick drawing of the hypothetical SOD20 molecule (a cuboc-
tahedron where each triangle face is decorated (capped) with an additional apex spin
site). The sites that are distinct by symmetry are coloured red (apex) and blue (base).
Right: Nearest-neighbour spin-spin correlations on this geometry. The two distinct
values that appear are: −0.2346 (red-blue) and −0.1274 (blue-blue). The ground
state is unique with no broken symmetries. The results were obtained using exact
diagonalization.

between parallel bonds can be especially effective in reducing the energy [55].
In the case of SOD60, parallel bonds are found on the square plaquettes (blue-blue) and

this may explain their relatively large correlations (see Tab. 2) at the expense of the red-blue
and green-blue ones. This leaves the red (apex) spins to couple more strongly with the green
spins. On the other hand, we note that for SOD20 (Fig. 4), the square plaquettes show weak
correlations.

We may also attempt to understand the VBC-like patterns: The number of all NNVB states
is given by the Hafnian of the interaction matrix Ji j [56]. For SOD60, using [57] we obtain
haf[J] = 5,971, 817 and for the subsystems haf[J(pole)] = 2, haf(J[equator)] = 800. We
conclude that there are only 2 · 2 · 800 = 3600 NNVB configurations that do not cross the
boundaries (or about 0.06%). Thus, the reason for the disconnection patterns does not seem
to relate to the paucity of NNV bonds that cross the subsystem borders.

We remark that for tetrahedra-based lattices, linear independence of NNVB states does
not hold [58], since it already breaks down locally for a single tetrahedron. Thus, the NNVB
picture seems only of limited use in this case.

6 Finite magnetic fields

We now study the properties of SOD60 in the presence of a finite magnetic field B. In Fig. 6,
we show the magnetization M = Stot as a function of B in the ground state of SOD60 as well
as of the hypothetical SOD20 molecule. The results were obtained by computing the lowest
energy state in each sector of the total spin Stot with an SU(2)-invariant bond dimension of
χSU(2) = 3000 (which, e.g., corresponds to χ ∼ 85000 in the sector with Stot = 18 if no
symmetries are exploited).

We observe wide magnetization plateaus that appear at 1/5, 3/5, and 4/5 of the saturation
value. Their broadness implies that they are thermodynamically stable and should be observ-
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able in the experiment. Such a signature could serve as a check that a given system can indeed
be described by an isotropic S = 1/2 Heisenberg model. We note that a wide 3/5 plateau was
experimentally observed in a capped kagome chain with S = 1/2 based on Cu [17], though
its ground state was found to have long-ranged canted antiferromagnetic order.3

We will now try to understand the reason for the appearance of the wide magnetization
plateaus as well as the nature of the corresponding fractions. At large fields, this can be
achieved by using the picture of localized magnons.

6.1 Localized magnons

The emergence of localized magnons due to frustration is an effect that is described in detail
in various publications [60–65]. Here, we focus on the essential quantitative properties for the
SOD60 molecule. In short, an eigenstate of the system one spinflip away from the saturation
(Stot = L/2− 1= 29, M = Stot) can be analytically expressed as:

�

�ΨLD

�

=
∑

l(i)∈LD

(−1)l(i) S−l(i)
�

� ↑↑ . . . ↑
�

, (7)

where S−i = S x
i − iS y

i is the spinflip-down operator and LD denotes the bipartite “localization
domain” of the magnon. In our case, the LD is a circular unfrustrated path of sites, consecu-
tively numbered l = 0, 1,2, . . ., which is sketched in Fig. 5. The proof that the above expression
is an eigenstate is a matter of standard quantum mechanics. Proving that it is also the lowest-
energy state in the sector with Stot = L/2−1 is more difficult [60], but can be readily verified
numerically. The localization effect can be understood in terms of destructive interference:
The spinflip terms that would otherwise let the magnon propagate through the entire lattice
cancel exactly if the localization domain is bounded by triangles. The magnon is thus forced
to “run in a circle” on the LD sites with a momentum of k = π.

+

+

+

-

-
-

+
+
-

- +

+

+

+-

-

-

-

Figure 5: The possible magnon localization domains (LDs) of the SOD60 molecule
on the hexagons and squares (see Sec. 6.1). The ± sign indicates the amplitude in
Eq. (7).
The right side is an abstracted way to understand the distribution of the LDs on the
molecule: The 8 hexagon plaquettes form the corners of a cube, while the 6 square
plaquettes are identical to the square faces of the cube. The ± sign refers to the
superposition of localized magnons in Eq. (8).

3Theoretically, one expects a width of 0.75−7.5 T if one assumes that J is in the range J/kB ∼ 1−10 K [59] and
that the gyromagnetic ratio is g = 2. For Gd-based SOD60, however, a very weak J/kB ≈ 0.15 K was estimated [14],
which is typical of rare earths and translates into a plateau width of 0.1 T. We note that in the experiments of
Ref. [17], the 3/5 plateau of the Cu-based compound seems to span at least 8 T.
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For SOD60, we have 14 localization domains given by the 6 squares and the 8 hexagon
faces (see Fig. 5). The change in energy from the fully polarized state (with E = 144/4= 36)
due to the presence of one magnon is ∆E = 4. We can continue to add up to N↓ = 6 magnons
that remain noninteracting on spatially separated squares and hexagons. The ground-state
energy for fixed Stot = L/2− n, n = 0, 1, . . . 6, is thus of the linear form E = (36− 4n). The
corresponding ground-state degeneracies are presented in Tab. 3. They are related to the num-
ber of linearly independent ways to arrange the magnons on the localization domains of the
system. The values are thus not obvious, but can be determined using exact diagonalization.
We have also confirmed them using DMRG, which additionally validates our code.

In the regime Stot = L/2− n, n = 0, 1, . . . , 6 the ground-state energy in the presence of a
magnetic field, EM (B) = 36−4 (30−M)−B ·M , forms a family of curves for different magneti-
zations M ≡ Stot that all intersect at the saturation field of Bsat = 4. Above (slightly below) the
saturation field, the fully polarized state with M = L/2= 30 (the state with M = L/2−6= 24)
is the ground state. The states with values of M in between are never the ground state. We
thus have a magnetization jump from M = Msat = 30 to M = 24 = 4/5 · Msat. This is can be
seen in Fig. 6.

At Bsat = 4, all the subspaces become degenerate, and the total degeneracy of the ground
state is given by the sum of all magnon subspaces, Ndeg = 182. Hence we obtain a zero-point
entropy of S = ln (182) kB ≈ 5.2kB per molecule (or 0.087kB per spin). For comparison, on
the icosidodecahedron, S = ln (38) kB ≈ 3.64kB per molecule (or 0.121kB per spin) can be
achieved. When the field is varied close to the saturation, the large change in entropy results
in an enhanced magnetocaloric effect [64].

The fact there are only 13 instead of 14 localized magnons in the Stot = 29 subspace can
be seen as follows: Ignoring the apex spins, the molecule can be thought of as a cube with the
hexagon plaquettes being placed at the corners and the square plaquettes being placed at the
faces (see Fig. 5). Since the hexagons form a bipartite lattice, we can enumerate them with
even and odd numbers for the respective sublattices. Then the following relation holds:

∑

i

(−1)i
�

�Ψhexagon,i

�

∝
∑

j

�

�Ψsquare,j

�

. (8)
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Figure 6: Magnetization M =
∑
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�

as a function of the applied magnetic field B
in the ground state of the SOD60 as well as of the SOD20 molecule.
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Table 3: Values of the lowest energy for total-spin values close to full saturation
(Stot = 30), as well as the corresponding degeneracies. Using SU(2) symmetries,
we have set the Stot quantum number rather than explicitly ramping up a magnetic
field. For Stot = 29, there are 13 linearly independent ways to place one localized
magnon on the 6 squares and 8 hexagons (see Eq. 5). For each downstep of Stot,
the number of magnons increases by one, the energy decreases linearly, while the
number of combinations grows rapidly and peaks at “half-filling” or 3 magnons. For
Stot = 24, there is just one combination of arranging the 6 magnons by placing them
on all the squares. The effect stops at that point, as can be seen from the deviation
from the linear behaviour of the energy at Stot = 23.

Stot E0(Stot) Ndeg Nmagnon

30 36 1 0
29 32 13 1
28 28 55 2
27 24 71 3
26 20 25 4
25 16 16 5
24 12 1 6
23 8.31(6) 1 -

Since the hexagons share one site, their amplitudes are cancelled by the factor of (−1)i , so
that the staggered superposition of the hexagon-magnons becomes proportional to the super-
position of the square-magnons, revealing the linear dependence.

6.2 Localized singlets and doublets

The plateaus at M/Msat = 3/5 and M/Msat = 1/5 can be thought of as an extension of the
previous concept from localized magnons to localized singlet clusters: The fraction of 3/5
corresponds to N↓ = 12 spinflips, which can be arranged in an antiferromagnetic fashion on
the square faces. Instead of localized one-magnon states, we now have clusters with 〈Si〉 ≈ 0
(see Fig. 7). They form a commensurate distribution on the molecule geometry and optimize
the antiferromagnetic exchange energy, thus effectively resisting a change in magnetization
when a field is applied.

We note that such states were also observed in the octahedral Heisenberg chain, where the
localization domains are squares as well [66–70]. The concept of localized magnons can be
extended to these two-magnon states at low fields, which allows for a classical dimer approx-
imation to treat the thermodynamics [67,68,70].

In contrast, N↓ = 18 spinflips (2/5 configuration) do not lead to an optimal arrangement
and do not produce a plateau. For the next special value of N↓ = 24 (1/5 configuration),
the previous distribution of spinflips persists and the additional 12 spinflips can be arranged
on the sites between the hexagons given by 3-site clusters involving two apex spins (for a 3D
impression, cf. the blue bonds in Fig. 3). Their total spin is nearly equal to 1/2 and features
strong antiferromagnetic correlations (see Fig. 8). This is another stable configuration that
resists a change due to the external field.

We note that whenever a localization domain consists out of three sites, as is the case for
the sawtooth chain [61–63] or for the tetrahedral chain [71–73], localized magnons naturally
form doublets as well. The difference to our case is that the doublets are approximate, appear
at a lower field and coexist with the singlets on the squares.
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0.1 0.2 0.3 0.4 0.45 0.30 0.15 0.00 0.15

Figure 7: Ground-state properties in the sector Stot = 18 that corresponds to the 3/5
magnetization plateau. The left and right panel show 〈Si〉 and the nearest-neighbour
spin-spin correlations, respectively. Note the appearance of localized singlet states,
〈Si〉 ≈ 0, with strong antiferromagnetic correlations (the grey sites along the square
faces in the left picture).

0.15 0.00 0.15 0.30 0.45 0.30 0.15 0.00

Figure 8: The same as in Fig. 7 but in the sector Stot = 6 that corresponds to the
1/5 magnetization plateau. Note the additional reduction of the local spin on the
12 sites between the hexagon faces (purple). Correspondingly, the 3-site clusters
between the squares now acquire a total spin of 1/2 and strong antiferromagnetic
correlations.

Overall, we find that the wavefunction at the special fractions of the saturation is again
characterized by the notion of disconnection. The 4/5 plateau is governed by 6 independent,
localized magnons, which one can show analytically and which is in line with other frustrated
geometries. At the 3/5 plateau, the localized-magnon states become 4-site localized singlet
states. Finally, at the 1/5 plateau, there is additional room for 12 localized spin-1/2 states.
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7 Conclusion

We have analyzed the ground-state properties of the antiferromagnetic S = 1/2 Heisenberg
model on the sodalite cage geometry with 24 vertex-sharing tetrahedra using DMRG. Unlike
smaller polyhedra, the ground state is given by the irreducible representation T and is thus
threefold degenerate. One can choose each member of the ground-state manifold such that
it is symmetry-broken and is invariant only under rotations about one of the three coordinate
axes.

The spin-spin correlations signal that the molecule breaks up into three large, nearly dis-
connected parts (16+16+28 sites). This scenario might be regarded as an extended VBS state,
though the disconnection is not exact. Note that an extended-VBS phase with a 12-site unit
cell has been recently found on the kagome lattice with second- and third-nearest-neighbour
ferromagnetic interactions [38].

The resulting ground states are difficult to connect by local updates with a local Hamilto-
nian. This entails glass-like behaviour within the DMRG algorithm; standard techniques (such
as adding fluctuations) fail, and we need to apply a global operation by explicitly rotating the
state.

The physics in the presence of a finite magnetic field is also characterized by confined
clusters which lead to magnetization plateaus at special fractions of the saturation. We find
localized magnons close to the saturation (4/5) that change into nearly-localized 4-site singlets
at the 3/5 plateau. At the 1/5 plateau, they are joined by localized 3-site doublets. These
magnetization plateaus are very wide in units of the exchange coupling J and should thus be
observable in the experiment.

The results obtained here raise the question whether the ground state for the full 3D py-
rochlore lattice may also be crystallized in real space, i.e., breaks the translational symmetry
in some nontrivial way, possibly with a large unit cell. As discussed in the introduction, results
that show four sublattices have been obtained in the past [24, 25, 27], but this is dissimilar
from the SOD60 molecule. Still, we may suspect that systems with vertex-sharing tetrahedra
have a general tendency towards spatial symmetry breaking, which manifests itself differently
for different geometries. For the SOD60 molecule, in particular, this may be further facilitated
by the apex spins, which have a reduced coordination number.

Apart from the connection to the pyrochlores, the results obtained here outline what can
be expected from a spin system on the sodalite cage geometry in the extreme quantum limit
with S = 1/2, in particular regarding potential future experiments.

Acknowledgements

R.R. and C.K. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the Emmy Noether program (KA3360/2-1) as well as by ‘Nieder-
sächsisches Vorab’ through the ‘Quantum- and Nano-Metrology (QUANOMET)’ initiative within
the project P-1.

M.P. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project ID 497779765.

C.P. is supported by the Deutsche Forschungsgemeinschaft (DFG) through the Cluster of
Excellence Advanced Imaging of Matter – EXC 2056 – project ID 390715994.

14

https://scipost.org
https://scipost.org/SciPostPhys.12.5.143


SciPost Phys. 12, 143 (2022)

A Symmetry transformations for the SOD60 molecule

In order to apply certain symmetry transformations, one has to construct an operator that
permutes the sites of the molecule. We are interested in 90◦ rotations about the three 4-
fold symmetry axes connecting the centres of opposite squares. (Alternatively, one could also
attempt 120◦ rotations about the 3-fold symmetry axes, which we did not do.) With respect
to the Schlegel projection (see Fig. 1), we define a horizontal (h) axis connecting the left and
right square, a vertical (v) axis connecting the lower and upper square, and a perpendicular
(p) axis connecting the innermost and outermost square. The corresponding permutations
of the index set {0, . . . , 59} are listed in Tab. 4. All three permutations decompose into 15
independent cycles, each consisting of three transpositions.
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Table 4: Permutations for the site indices that represent 90◦ rotations about the
specified axes.

h v p

0→ 17 0→ 30 0→ 12
1→ 31 1→ 29 1→ 10
2→ 16 2→ 44 2→ 24
3→ 25 3→ 15 3→ 4
4→ 32 4→ 18 4→ 11
5→ 6 5→ 45 5→ 25
6→ 18 6→ 46 6→ 26
7→ 24 7→ 13 7→ 1
8→ 12 8→ 14 8→ 0
9→ 26 9→ 5 9→ 3

10→ 47 10→ 16 10→ 22
11→ 40 11→ 6 11→ 9
12→ 48 12→ 17 12→ 23
13→ 2 13→ 53 13→ 31
14→ 0 14→ 43 14→ 17
15→ 5 15→ 54 15→ 32

16→ 29 16→ 55 16→ 39
17→ 30 17→ 48 17→ 41
18→ 15 18→ 56 18→ 40
19→ 10 19→ 27 19→ 2
20→ 4 20→ 28 20→ 6

21→ 11 21→ 20 21→ 5
22→ 39 22→ 2 22→ 7
23→ 41 23→ 0 23→ 8
24→ 55 24→ 31 24→ 36
25→ 46 25→ 32 25→ 38
26→ 56 26→ 25 26→ 37
27→ 1 27→ 42 27→ 16
28→ 3 28→ 35 28→ 18

29→ 13 29→ 59 29→ 47
30→ 14 30→ 58 30→ 48
31→ 44 31→ 47 31→ 51
32→ 45 32→ 40 32→ 52
33→ 22 33→ 19 33→ 13
34→ 23 34→ 8 34→ 14
35→ 9 35→ 21 35→ 15

36→ 51 36→ 1 36→ 19
37→ 38 37→ 3 37→ 20
38→ 52 38→ 4 38→ 21
39→ 59 39→ 24 39→ 49
40→ 54 40→ 26 40→ 50
41→ 58 41→ 12 41→ 34
42→ 7 42→ 33 42→ 29
43→ 8 43→ 34 43→ 30

44→ 27 44→ 57 44→ 55
45→ 20 45→ 50 45→ 46
46→ 28 46→ 52 46→ 56
47→ 53 47→ 39 47→ 57
48→ 43 48→ 41 48→ 58
49→ 36 49→ 7 49→ 27
50→ 37 50→ 9 50→ 28
51→ 57 51→ 10 51→ 33
52→ 50 52→ 11 52→ 35
53→ 19 53→ 49 53→ 44
54→ 21 54→ 37 54→ 45
55→ 42 55→ 51 55→ 59
56→ 35 56→ 38 56→ 54
57→ 49 57→ 22 57→ 42
58→ 34 58→ 23 58→ 43
59→ 33 59→ 36 59→ 53
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