10 research outputs found

    Future Antarctic Climate: Storylines of mid-latitude jet strengthening and shift emergent from CMIP6

    Get PDF
    A main source of regional climate change uncertainty is the large disparity across models in simulating the atmospheric circulation response to global warming. Using the latest suite of global climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a storyline approach is adopted to derive physically plausible scenarios of Antarctic climate change for 2070-2099, according to Shared Socioeconomic Pathway SSP5-8.5. These storylines correspond to differences in the simulated amount of seasonal sea ice loss and either (a) the delay in the summertime stratospheric polar vortex (SPV) breakdown or (b) wintertime SPV strengthening, which together constitute robust drivers of the response pattern to future climate change. Such changes combined are known to exert a strong control over the Southern Hemisphere mid-latitude jet stream, which we quantify as collectively explaining up to 70% of the variance in jet response in summer and 35% in winter. For summer, the expected strengthening and displacement of the tropospheric jet stream varies between a ∼1 and 2 m s−1 increase and ∼2 to 4° poleward shift respectively across storylines. In both seasons, a larger strengthening of the jet is correlated with less Antarctic warming. By contrast, the response in precipitation is more consistent but still strongly attenuated by large-scale dynamics. We find that an increase in high-latitude precipitation around Antarctica is more pronounced for storylines characterized by a greater poleward jet shift, particularly in summer. Our results highlight the usefulness of the storyline approach in illustrating model uncertainty and understanding the processes that determine the spread in projected Antarctic regional climate response

    Future Antarctic Climate: Storylines of Midlatitude Jet Strengthening and Shift Emergent from CMIP6

    Get PDF
    A main source of regional climate change uncertainty is the large disparity across models in simulating the atmospheric circulation response to global warming. Using the latest suite of global climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a storyline approach is adopted to derive physically plausible scenarios of Antarctic climate change for 2070–99, according to Shared Socioeconomic Pathway SSP5-8.5. These storylines correspond to differences in the simulated amount of seasonal sea ice loss and either (i) the delay in the summertime stratospheric polar vortex (SPV) breakdown or (ii) wintertime SPV strengthening, which together constitute robust drivers of the response pattern to future climate change. Such changes combined are known to exert a strong control over the Southern Hemisphere midlatitude jet stream, which we quantify as collectively explaining up to 70% of the variance in jet response in summer and 35% in winter. For summer, the expected strengthening and displacement of the tropospheric jet stream varies between a;1 and 2 m s21 increase and;28–48 poleward shift, respectively, across storylines. In both seasons, a larger strengthening of the jet is correlated with less Antarctic warming. By contrast, the response in precipitation is more consistent but still strongly attenuated by large-scale dynamics. We find that an increase in high-latitude precipitation around Antarctica is more pronounced for storylines characterized by a greater poleward jet shift, particularly in summer. Our results highlight the usefulness of the storyline approach in illustrating model uncertainty and understanding the processes that determine the spread in projected Antarctic regional climate response. SIGNIFICANCE STATEMENT: Uncertainty in future climate predictions for the Antarctic is dominated by the unknown response of the large-scale (global) atmospheric circulation. In characterizing such uncertainty, plausible outcomes of climate response (storylines) are generated from the organization of model projections according to the amount of simulated seasonal sea ice loss and the delay in summertime breakdown/winter strengthening of the stratospheric westerly circulation (polar vortex). The intensity and location of the tropospheric jet stream is strongly dependent on both factors, which strongly influences the near-surface climate response over Antarctica. We find that the simulated amount that Antarctic air temperatures increase by in the future (to the end of the century) is intrinsically related to the projected intensification of the Southern Hemisphere tropospheric jet, varying by a factor of 2 or more across storylines for summer. Storylines with greater jet strengthening are associated with less Antarctic warming (reduced poleward advection of air masses from lower latitudes). Similar differences are found for changes in jet position, which we note has a much stronger control on mid- to high-latitude precipitation response. This includes both an enhanced wetting response around Antarctica and drying response farther equatorward, for storylines characterized by a greater poleward jet shift

    Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems

    Get PDF
    The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system\u27s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere

    Enhanced Stratosphere/Troposphere Coupling During Extreme Warm Stratospheric Events with Strong Polar-Night Jet Oscillation

    No full text
    Extreme warm stratospheric events during polar winters from ERA-Interim reanalysis and CMIP5-ESM-LR runs were separated by duration and strength of the polar-night jet oscillation (PJO) using a high statistical confidence level of three standard deviations (strong-PJO events). With a composite analysis, we demonstrate that strong-PJO events show a significantly stronger downward propagating signal in both, northern annular mode (NAM) and zonal mean zonal wind anomaly in the stratosphere in comparison with non-PJO events. The lower stratospheric EP-flux-divergence difference in ERA-Interim was stronger in comparison to long-term CMIP5-ESM-LR runs (by a factor of four). This suggests that stratosphere⁻troposphere coupling is stronger in ERA-Interim than in CMIP5-ESM-LR. During the 60 days following the central date (CD), the Arctic oscillation signal was more intense during strong-PJO events than during non-PJO events in ERA-Interim data in comparison to CMIP5-ESM-LR runs. During the 15-day phase after CD, strong PJO events had a significant increase in stratospheric ozone, upper tropospheric zonally asymmetric impact, and a regional surface impact in ERA-Interim. Finally, we conclude that the applied high statistical threshold gives a clearer separation of extreme warm stratospheric events into strong-PJO events and non-PJO events including their different downward propagating NAM signal and tropospheric impacts

    Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems

    No full text
    The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system's climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.ISSN:2698-402
    corecore