6 research outputs found

    Combined use of optical tweezers and scanning electron microscopy to reveal influence of nanoparticles on red blood cells interactions

    No full text
    Abstract As a promising drug delivery system, itself or coupled with red blood cells (RBC), nanoparticles (NP) should be studied in frames of their interaction at the cellular level. Experiments were performed on RBC in autologous blood plasma incubated with different NP — TiO₂, ZnO, nanodiamonds and polymeric nanocapsules. RBC aggregates formation in RBC suspension was observed with conventional microscopy, while quantitative interaction force measurements between individual RBC was assessed with optical tweezers. Scanning electron microscopy (SEM) imaging demonstrated NP localization and RBC membrane modifications upon binding with NP. Among tested NP, nanodiamonds caused increasing the size of aggregates in RBC suspensions, RBC interaction force increase and strong membrane surface modifications, comparing to other tested NP and control sample. Nanocapsules do not cause any adverse effects on RBC properties, confirming biocompatibility and applicability for drug delivery purposes. Optical tweezers combined with SEM imaging serves as fast informative assessment of NP effects on RBC

    Optical studies of nanodiamond-tissue interaction:skin penetration and localization

    No full text
    Abstract In this work, several optical-spectroscopic methods have been used to visualize and investigate the penetration of diamond nanoparticles (NPs) of various sizes (3–150 nm), surface structures and fluorescence properties into the animal skin in vitro. Murine skin samples have been treated with nanodiamond (ND) water suspensions and studied using optical coherence tomography (OCT), confocal and two-photon fluorescence microscopy and fluorescence lifetime imaging (FLIM). An analysis of the optical properties of the used nanodiamonds (NDs) enables the selection of optimal optical methods or their combination for the study of nanodiamond–skin interaction. Among studied NDs, particles of 100 nm in nominal size were shown to be appropriate for multimodal imaging using all three methods. All the applied NDs were able to cross the skin barrier and penetrate the different layers of the epidermis to finally arrive in the hair follicle niches. The results suggest that NDs have the potential for multifunctional applications utilizing multimodal imaging

    Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity

    Get PDF
    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development

    FRET Based Quantification and Screening Technology Platform for the Interactions of Leukocyte Function-Associated Antigen-1 (LFA-1) with InterCellular Adhesion Molecule-1 (ICAM-1)

    Get PDF
    <div><p>The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple ‘in solution’ steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (K<sub>d</sub>) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the K<sub>d</sub> between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the K<sub>d</sub> determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine K<sub>d</sub> as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.</p></div
    corecore