5,248 research outputs found

    Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites

    Full text link
    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e_g states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise "noninteracting" TB parameters, and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure

    Distinguishing two-qubit states using local measurements and restricted classical communication

    Get PDF
    The problem of unambiguous state discrimination consists of determining which of a set of known quantum states a particular system is in. One is allowed to fail, but not to make a mistake. The optimal procedure is the one with the lowest failure probability. This procedure has been extended to bipartite states where the two parties, Alice and Bob, are allowed to manipulate their particles locally and communicate classically in order to determine which of two possible two-particle states they have been given. The failure probability of this local procedure has been shown to be the same as if the particles were together in the same location. Here we examine the effect of restricting the classical communication between the parties, either allowing none or eliminating the possibility that one party's measurement depends on the result of the other party's. These issues are studied for two-qubit states, and optimal procedures are found. In some cases the restrictions cause increases in the failure probability, but in other cases they do not. Applications of these procedures, in particular to secret sharing, are discussed.Comment: 18 pages, two figure

    A comparative study of super- and highly-deformed bands in the A ~ 60 mass region

    Full text link
    Super- and highly-deformed rotational bands in the A ~ 60 mass region are studied within cranked relativistic mean field theory and the configuration-dependent shell-correction approach based on the cranked Nilsson potential. Both approaches describe the experimental data well. Low values of the dynamic moments of inertia J^(2) compared with the kinematic moments of inertia J^(1) seen both in experiment and in calculations at high rotational frequencies indicate the high energy cost to build the states at high spin and reflect the limited angular momentum content in these configurations.Comment: 11 pages, 4 PostScript figures, Latex, uses 'epsf', submitted to Phys. Lett.

    Improved CRISPR-based suppression gene drives mitigate resistance and impose a large reproductive load on laboratory-contained mosquito populations

    Get PDF
    Abstract CRISPR-based genes drives bias their own inheritance and can be used to modify entire populations of insect vectors of disease as a novel form of sustainable disease control. Gene drives designed to interfere with female fertility can suppress populations of the mosquito vector of malaria, however laboratory demonstrations showed strong unintended fitness costs and high levels of resistant mutations that limited the potential of the first generation of gene drives to spread. We describe three new gene drives designed to restrict spatio-temporal nuclease expression by using novel regulatory sequences. Two of the three new designs dramatically improve fitness and mitigate the creation and selection of resistance. We dissect the relative contributions of germline CRISPR activity versus embryonic CRISPR activity resulting from parental deposition, showing that the improved performance of the new designs is due to tighter germline restriction of the nuclease activity and significantly lower rates of end-joining repair in the embryo. Moreover, we demonstrate in laboratory-contained population experiments that these gene drives show remarkably improved invasion dynamics compared to the first generation drives, resulting in greater than 90% suppression of the reproductive output and a delay in the emergence of target site resistance, even at a loosely constrained target sequence. These results illustrate important considerations for gene drive design and will help expedite the development of gene drives designed to control malaria transmission in Africa

    Quantum Communication between N partners and Bell's inequalities

    Full text link
    We consider a family of quantum communication protocols involving NN partners. We demonstrate the existence of a link between the security of these protocols against individual attacks by the eavesdropper, and the violation of some Bell's inequalities, generalizing the link that was noticed some years ago for two-partners quantum cryptography. The arguments are independent of the local hidden variable debate.Comment: 4 pages, 2 figure

    Pre-galactic metal enrichment - The chemical signatures of the first stars

    Get PDF
    The emergence of the first sources of light at redshifts of z ~ 10-30 signaled the transition from the simple initial state of the Universe to one of increasing complexity. We review recent progress in our understanding of the formation of the first stars and galaxies, starting with cosmological initial conditions, primordial gas cooling, and subsequent collapse and fragmentation. We emphasize the important open question of how the pristine gas was enriched with heavy chemical elements in the wake of the first supernovae. We conclude by discussing how the chemical abundance patterns conceivably allow us to probe the properties of the first stars and subsequent stellar generations, and allow us to test models of early metal enrichment.Comment: 52 pages, 20 figures, clarifications, references added, accepted for publication in the Reviews of Modern Physic

    A measurement of the differential cross section for the two-body photodisintegration of 3He at theta_LAB = 90deg using tagged photons in the energy range 14 -- 31 MeV

    Full text link
    The two-body photodisintegration of 3He has been investigated using tagged photons with energies from 14 -- 31 MeV at MAX-lab in Lund, Sweden. The two-body breakup channel was unambiguously identified by the (nonsimultaneous) detection of both protons and deuterons. This approach was made feasible by the over-determined kinematic situation afforded by the tagged-photon technique. Proton- and deuteron-energy spectra were measured using four silicon surface-barrier detector telescopes located at a laboratory angle of 90deg with respect to the incident photon-beam direction. Average statistical and systematic uncertainties of 5.7% and 6.6% in the differential cross section were obtained for 11 photon-energy bins with an average width of 1.2 MeV. The results are compared to previous experimental data measured at comparable photon energies as well as to the results of two recent Faddeev calculations which employ realistic potential models and take into account three-nucleon forces and final-state interactions. Both the accuracy and precision of the present data are improved over the previous measurements. The data are in good agreement with most of the previous results, and favor the inclusion of three-nucleon forces in the calculations.Comment: 12 pages, 13 figures; further Referee comments addresse

    Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

    Full text link
    Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of 4545^\circ, 125125^\circ, and 135135^\circ. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, αN+βN=17.4±3.7\alpha_N + \beta_N = 17.4 \pm 3.7 and αNβN=6.4±2.4\alpha_N - \beta_N = 6.4 \pm 2.4 (in units of 10410^{-4} fm3^3), have been determined. By combining the latter with the global-averaged value for αpβp\alpha_p - \beta_p and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of αn=8.8±2.4\alpha_n= 8.8 \pm 2.4(total) ±3.0\pm 3.0(model) and βn=6.52.4\beta_n = 6.5 \mp 2.4(total) 3.0\mp 3.0(model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The cross sections are slightly different due to improvements in the analysi
    corecore