10 research outputs found

    Unforeseen Computed Tomography Resimulation for Initial Radiation Planning: Associated Factors and Clinical Impact

    Get PDF
    Purpose: Repeat computed tomography (CT) simulation is problematic because of additional expense of clinic resources, patient inconvenience, additional radiation exposure, and treatment delay. We investigated the factors and clinical impact of unplanned CT resimulations in our network. Methods and Materials: We used the billing records of 18,170 patients treated at 5 clinics. A total of 213 patients were resimulated before their first treatment. The disease site, location, use of 4- dimensional CT (4DCT), contrast, image fusion, and cause for resimulation were recorded. Odds ratios determined statistical significance. Results: Our total rate of resimulation was 1.2%. Anal/colorectal (P \u3c .001) and head and neck (P \u3c .001) disease sites had higher rates of resimulation. Brain (P Z .001) and lung/thorax (P Z .008) had lower rates of resimulation. The most common causes for resimulation were setup change (11.7%), change in patient anatomy (9.8%), and rectal filling (8.5%). The resimulation rate for 4DCTs was 3.03% compared with 1.0% for non-4DCTs (P \u3c .001). Median time between simulations was 7 days. Conclusions: The most common sites for resimulation were anal/colorectal and head and neck, largely because of change in setup or changes in anatomy. The 4DCT technique correlated with higher resimulation rates. The resimulation rate was 1.2%, and median treatment delay was 7 days. Further studies are warranted to limit the rate of resimulation

    A Radiation Oncology Based Electronic Health Record in an Integrated Radiation Oncology Network

    Get PDF
    Purpose: The goal of this ongoing project is to develop and integrate a comprehensive electronic health record (EHR) throughout a multi-facility radiation oncology network to facilitate more efficient workflow and improve overall patient care and safety. Methodology: We required that the EHR provide pre-defined record and verify capability for radiation treatment while still providing a robust clinical health record. In 1996, we began to integrate the Local Area Network Treatment Information System (LANTIS®) across the West Penn Allegheny Radiation Oncology Network (currently including 9 sites). By 2001, we began modifying and expanding the assessment components and creating user-defined templates and have developed a comprehensive electronic health record across our network. Results: In addition to access to the technical record and verify information and imaging obtained for image-guided therapy, we designed and customized 6 modules according to our networks needs to facilitate information acquisition, tracking, and analysis as follows: 1) Demographics/scheduling; 2) Charge codes; 3) Transcription/clinical documents; 4) Clinical/technical assessments; 5) Physician orders 6) Quality assurance pathways. Each module was developed to acquire specific technical/clinical data prospectively in an efficient manner by various staff within the department in a format that facilitates data queries for outcomes/statistical analyses and promotes standardized quality guidelines resulting in a more efficient workflow and improved patient safety and care. Conclusions: Development of a comprehensive EHR across a radiation oncology network is feasible and can be customized to promote clinical/technical standards, facilitate outcomes studies, and improve communication and peer review. The EHR has improved patient care and network integration across a multi-facility radiation oncology system and has markedly reduced the flow and storage of paper across the network

    Cancer Stem Cell Chemotherapeutics Assay for Prospective Treatment of Recurrent Glioblastoma and Progressive Anaplastic Glioma: A Single-Institution Case Series

    Get PDF
    © 2020 BACKGROUND: Chemotherapy-resistant cancer stem cells (CSC) may lead to tumor recurrence in glioblastoma (GBM). The poor prognosis of this disease emphasizes the critical need for developing a treatment stratification system to improve outcomes through personalized medicine. METHODS: We present a case series of 12 GBM and 2 progressive anaplastic glioma cases from a single Institution prospectively treated utilizing a CSC chemotherapeutics assay (ChemoID) guided report. All patients were eligible to receive a stereotactic biopsy and thus undergo ChemoID testing. We selected one of the most effective treatments based on the ChemoID assay report from a panel of FDA approved chemotherapy as monotherapy or their combinations for our patients. Patients were evaluated by MRI scans and response was assessed according to RANO 1.1 criteria. RESULTS: Of the 14 cases reviewed, the median age of our patient cohort was 49 years (21–63). We observed 6 complete responses (CR) 43%, 6 partial responses (PR) 43%, and 2 progressive diseases (PD) 14%. Patients treated with ChemoID assay-directed therapy, in combination with other modality of treatment (RT, LITT), had a longer median overall survival (OS) of 13.3 months (5.4-NA), compared to the historical median OS of 9.0 months (8.0–10.8 months) previously reported. Notably, patients with recurrent GBM or progressive high-grade glioma treated with assay-guided therapy had a 57% probability to survive at 12 months, compared to the 27% historical probability of survival observed in previous studies. CONCLUSIONS: The results presented here suggest that the ChemoID Assay has the potential to stratify individualized chemotherapy choices to improve recurrent and progressive high-grade glioma patient survival. Importance of the Study: Glioblastoma (GBM) and progressive anaplastic glioma are the most aggressive brain tumor in adults and their prognosis is very poor even if treated with the standard of care chemoradiation Stupp\u27s protocol. Recent knowledge pointed out that current treatments often fail to successfully target cancer stem cells (CSCs) that are responsible for therapy resistance and recurrence of these malignant tumors. ChemoID is the first and only CLIA (clinical laboratory improvements amendment) -certified and CAP (College of American Pathologists) -accredited chemotherapeutic assay currently available in oncology clinics that examines patient\u27s derived CSCs susceptibility to conventional FDA (Food and Drugs Administration) -approved drugs. In this study we observed that although the majority of our patients (71.5%) presented with unfavorable prognostic predictors (wild type IDH-1/2 and unmethylated MGMT promoter), patients treated with ChemoID assay-directed therapy had an overall response rate of 86% and increased median OS of 13.3 months compared to the historical median OS of 9.1 months (8.1–10.1 months) previously reported [1] suggesting that the ChemoID assay may be beneficial in personalizing treatment strategies

    Linear Accelerator-Based Stereotactic Radiotherapy for Low-Grade Meningiomas: Improved Local Control With Hypofractionation

    No full text
    Background and purpose: Meningioma is a common type of benign tumor that can be managed in several ways, ranging from close observation, surgical resection, and various types of radiation. We present here results from a 10-year experience treating meningiomas with a hypofractionated approach. Materials and methods: We reviewed the charts of 56 patients treated with stereotactic radiosurgery (SRS) or hypofractionated stereotactic radiotherapy (SRT) from 2008 to 2017. A total of 46 (82%) patients had WHO Grade 1 disease and 10 (18%) had Grade 2. Outcomes that were analyzed included local control rates and the rate and grade of any reported toxicity. Results: A total of 38 women and 18 men underwent SRS to a median dose of 15 Gy (n = 24) or hypofractionated SRT with a median dose of 25 Gy in five fractions (n = 34). Of the 56 patients, 22 had surgery before receiving treatment. The median follow-up was 36 (6-110) months. Local control at 2 and 5 years for all patients was 90% and 88%, respectively. Comparing fractionated to single-fraction treatment, there was improved local control with fractionation (91% vs 80% local control at 2 years, P  = .009). There was one episode of late radionecrosis on imaging with associated symptoms after single-fraction treatment and one patient requiring resection of meningioma related to worsening symptoms (and local recurrence) after five-fraction SRT. Conclusions: This study provides further evidence for high rates of local control and minimal toxicity using a hypofractionated SRT approach, with improvement in local control through use of hypofractionation

    Unforeseen Computed Tomography Resimulation for Initial Radiation Planning: Associated Factors and Clinical Impact.

    No full text
    PURPOSE: Repeat computed tomography (CT) simulation is problematic because of additional expense of clinic resources, patient inconvenience, additional radiation exposure, and treatment delay. We investigated the factors and clinical impact of unplanned CT resimulations in our network. METHODS AND MATERIALS: We used the billing records of 18,170 patients treated at 5 clinics. A total of 213 patients were resimulated before their first treatment. The disease site, location, use of 4-dimensional CT (4DCT), contrast, image fusion, and cause for resimulation were recorded. Odds ratios determined statistical significance. RESULTS: Our total rate of resimulation was 1.2%. Anal/colorectal ( CONCLUSIONS: The most common sites for resimulation were anal/colorectal and head and neck, largely because of change in setup or changes in anatomy. The 4DCT technique correlated with higher resimulation rates. The resimulation rate was 1.2%, and median treatment delay was 7 days. Further studies are warranted to limit the rate of resimulation

    A Comparison of Single Fraction and Multi Fraction Radiosurgery on the Gamma Knife ICON: A Single Institution Review

    No full text
    Purpose: Brain metastases are a common development in patients with malignant solid tumors. Stereotactic radiosurgery (SRS) has a long track record of effectively and safely treating these patients, with some limitations to the use of single fraction SRS based on size and volume. In this study, we reviewed outcomes of patients treated using SRS and fractionated SRS (fSRS) to compare predictors and outcomes of those treatments. Methods and Materials: Two hundred patients treated with SRS or fSRS for intact brain metastases were included. We tabulated baseline characteristics and performed a logistic regression to identify predictors of fSRS. Cox regression was used to identify predictors of survival. Kaplan-Meier analysis was used to calculate survival, local failure, and distant failure rates. A receiver operating characteristic curve was generated to determine timepoint from planning to treatment associated with local failure. Results: The only predictor of fSRS was tumor volume >2.061 cm3. There was no difference in local failure, toxicity, or survival by fractionation of biologically effective dose. Predictors of worse survival were age, extracranial disease, history of whole brain radiation therapy, and volume. Receiver operating characteristic analysis identified 10 days as potential factor in local failure. At 1 year, local control was 96.48 and 76.92% for those patients treated before or after that interval, respectively (P = .0005). Conclusions: Fractionated SRS is a safe and effective alternative for patients with larger volume tumors not suitable for single fraction SRS. Care should be taken to treat these patients expeditiously as a delay was shown to affect local control in this study
    corecore