2,334 research outputs found

    Survival of interacting Brownian particles in crowded 1D environment

    Full text link
    We investigate a diffusive motion of a system of interacting Brownian particles in quasi-one-dimensional micropores. In particular, we consider a semi-infinite 1D geometry with a partially absorbing boundary and the hard-core inter-particle interaction. Due to the absorbing boundary the number of particles in the pore gradually decreases. We present the exact analytical solution of the problem. Our procedure merely requires the knowledge of the corresponding single-particle problem. First, we calculate the simultaneous probability density of having still a definite number N−kN-k of surviving particles at definite coordinates. Focusing on an arbitrary tagged particle, we derive the exact probability density of its coordinate. Secondly, we present a complete probabilistic description of the emerging escape process. The survival probabilities for the individual particles are calculated, the first and the second moments of the exit times are discussed. Generally speaking, although the original inter-particle interaction possesses a point-like character, it induces entropic repulsive forces which, e.g., push the leftmost (rightmost) particle towards (opposite) the absorbing boundary thereby accelerating (decelerating) its escape. More importantly, as compared to the reference problem for the non-interacting particles, the interaction changes the dynamical exponents which characterize the long-time asymptotic dynamics. Interesting new insights emerge after we interpret our model in terms of a) diffusion of a single particle in a NN-dimensional space, and b) order statistics defined on a system of NN independent, identically distributed random variables

    Early appraisal of the fixation probability in directed networks

    Get PDF
    In evolutionary dynamics, the probability that a mutation spreads through the whole population, having arisen in a single individual, is known as the fixation probability. In general, it is not possible to find the fixation probability analytically given the mutant's fitness and the topological constraints that govern the spread of the mutation, so one resorts to simulations instead. Depending on the topology in use, a great number of evolutionary steps may be needed in each of the simulation events, particularly in those that end with the population containing mutants only. We introduce two techniques to accelerate the determination of the fixation probability. The first one skips all evolutionary steps in which the number of mutants does not change and thereby reduces the number of steps per simulation event considerably. This technique is computationally advantageous for some of the so-called layered networks. The second technique, which is not restricted to layered networks, consists of aborting any simulation event in which the number of mutants has grown beyond a certain threshold value, and counting that event as having led to a total spread of the mutation. For large populations, and regardless of the network's topology, we demonstrate, both analytically and by means of simulations, that using a threshold of about 100 mutants leads to an estimate of the fixation probability that deviates in no significant way from that obtained from the full-fledged simulations. We have observed speedups of two orders of magnitude for layered networks with 10000 nodes

    Universality of Long-Range Correlations in Expansion-Randomization Systems

    Full text link
    We study the stochastic dynamics of sequences evolving by single site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ\chi of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ\chi, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.Comment: 23 pages, 15 figure

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    Analytical Solution of a Stochastic Content Based Network Model

    Full text link
    We define and completely solve a content-based directed network whose nodes consist of random words and an adjacency rule involving perfect or approximate matches, for an alphabet with an arbitrary number of letters. The analytic expression for the out-degree distribution shows a crossover from a leading power law behavior to a log-periodic regime bounded by a different power law decay. The leading exponents in the two regions have a weak dependence on the mean word length, and an even weaker dependence on the alphabet size. The in-degree distribution, on the other hand, is much narrower and does not show scaling behavior. The results might be of interest for understanding the emergence of genomic interaction networks, which rely, to a large extent, on mechanisms based on sequence matching, and exhibit similar global features to those found here.Comment: 13 pages, 5 figures. Rewrote conclusions regarding the relevance to gene regulation networks, fixed minor errors and replaced fig. 4. Main body of paper (model and calculations) remains unchanged. Submitted for publicatio

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Minimal Absent Words in Prokaryotic and Eukaryotic Genomes

    Get PDF
    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we explore different sets of minimal absent words in the genomes of 22 organisms (one archaeota, thirteen bacteria and eight eukaryotes). We investigate if the mutational biases that may explain the deficit of the shortest absent words in vertebrates are also pervasive in other absent words, namely in minimal absent words, as well as to other organisms. We find that the compositional biases observed for the shortest absent words in vertebrates are not uniform throughout different sets of minimal absent words. We further investigate the hypothesis of the inheritance of minimal absent words through common ancestry from the similarity in dinucleotide relative abundances of different sets of minimal absent words, and find that this inheritance may be exclusive to vertebrates

    Stochastic slowdown in evolutionary processes

    Full text link
    We examine birth--death processes with state dependent transition probabilities and at least one absorbing boundary. In evolution, this describes selection acting on two different types in a finite population where reproductive events occur successively. If the two types have equal fitness the system performs a random walk. If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the transition probabilities. How long does it take until advantageous mutants have invaded and taken over? Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows a more intuitive understanding. We show that this effect can occur for weak but non--vanishing bias (selection) in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to birth-death processes.Comment: 8 pages, 3 figures, accepted for publicatio

    Universal exit probabilities in the TASEP

    Full text link
    We study the joint exit probabilities of particles in the totally asymmetric simple exclusion process (TASEP) from space-time sets of given form. We extend previous results on the space-time correlation functions of the TASEP, which correspond to exits from the sets bounded by straight vertical or horizontal lines. In particular, our approach allows us to remove ordering of time moments used in previous studies so that only a natural space-like ordering of particle coordinates remains. We consider sequences of general staircase-like boundaries going from the northeast to southwest in the space-time plane. The exit probabilities from the given sets are derived in the form of Fredholm determinant defined on the boundaries of the sets. In the scaling limit, the staircase-like boundaries are treated as approximations of continuous differentiable curves. The exit probabilities with respect to points of these curves belonging to arbitrary space-like path are shown to converge to the universal Airy2_2 process.Comment: 46 pages, 7 figure

    Economical (k,m)-threshold controlled quantum teleportation

    Full text link
    We study a (k,m)-threshold controlling scheme for controlled quantum teleportation. A standard polynomial coding over GF(p) with prime p > m-1 needs to distribute a d-dimensional qudit with d >= p to each controller for this purpose. We propose a scheme using m qubits (two-dimensional qudits) for the controllers' portion, following a discussion on the benefit of a quantum control in comparison to a classical control of a quantum teleportation.Comment: 11 pages, 2 figures, v2: minor revision, discussions improved, an equation corrected in procedure (A) of section 4.3, v3: major revision, protocols extended, citations added, v4: minor grammatical revision, v5: minor revision, discussions extende
    • …
    corecore