1,877 research outputs found

    Enhanced electron correlations at the SrxCa1-xVO3 surface

    Get PDF
    We report hard x-ray photoemission spectroscopy measurements of the electronic structure of the prototypical correlated oxide SrxCa1-xVO3. By comparing spectra recorded at different excitation energies, we show that 2.2 keV photoelectrons contain a substantial surface component, whereas 4.2 keV photoelectrons originate essentially from the bulk of the sample. Bulk-sensitive measurements of the O 2p valence band are found to be in good agreement with ab initio calculations of the electronic structure, with some modest adjustments to the orbital-dependent photoionization cross sections. The evolution of the O 2p electronic structure as a function of the Sr content is dominated by A-site hybridization. Near the Fermi level, the correlated V 3d Hubbard bands are found to evolve in both binding energy and spectral weight as a function of distance from the vacuum interface, revealing higher correlation at the surface than in the bulk

    Stochastic Chemical Reactions in Micro-domains

    Full text link
    Traditional chemical kinetics may be inappropriate to describe chemical reactions in micro-domains involving only a small number of substrate and reactant molecules. Starting with the stochastic dynamics of the molecules, we derive a master-diffusion equation for the joint probability density of a mobile reactant and the number of bound substrate in a confined domain. We use the equation to calculate the fluctuations in the number of bound substrate molecules as a function of initial reactant distribution. A second model is presented based on a Markov description of the binding and unbinding and on the mean first passage time of a molecule to a small portion of the boundary. These models can be used for the description of noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photo-receptors, hair cells in the cochlea.Comment: 33 pages, Journal Chemical Physic

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    Determinantal Correlations of Brownian Paths in the Plane with Nonintersection Condition on their Loop-Erased Parts

    Full text link
    As an image of the many-to-one map of loop-erasing operation \LE of random walks, a self-avoiding walk (SAW) is obtained. The loop-erased random walk (LERW) model is the statistical ensemble of SAWs such that the weight of each SAW ζ\zeta is given by the total weight of all random walks π\pi which are inverse images of ζ\zeta, \{\pi: \LE(\pi)=\zeta \}. We regard the Brownian paths as the continuum limits of random walks and consider the statistical ensemble of loop-erased Brownian paths (LEBPs) as the continuum limits of the LERW model. Following the theory of Fomin on nonintersecting LERWs, we introduce a nonintersecting system of NN-tuples of LEBPs in a domain DD in the complex plane, where the total weight of nonintersecting LEBPs is given by Fomin's determinant of an N×NN \times N matrix whose entries are boundary Poisson kernels in DD. We set a sequence of chambers in a planar domain and observe the first passage points at which NN Brownian paths (γ1,...,γN)(\gamma_1,..., \gamma_N) first enter each chamber, under the condition that the loop-erased parts (\LE(\gamma_1),..., \LE(\gamma_N)) make a system of nonintersecting LEBPs in the domain in the sense of Fomin. We prove that the correlation functions of first passage points of the Brownian paths of the present system are generally given by determinants specified by a continuous function called the correlation kernel. The correlation kernel is of Eynard-Mehta type, which has appeared in two-matrix models and time-dependent matrix models studied in random matrix theory. Conformal covariance of correlation functions is demonstrated.Comment: v3: REVTeX4, 27 pages, 10 figures, corrections made for publication in Phys.Rev.

    A Match in Time Saves Nine: Deterministic Online Matching With Delays

    Full text link
    We consider the problem of online Min-cost Perfect Matching with Delays (MPMD) introduced by Emek et al. (STOC 2016). In this problem, an even number of requests appear in a metric space at different times and the goal of an online algorithm is to match them in pairs. In contrast to traditional online matching problems, in MPMD all requests appear online and an algorithm can match any pair of requests, but such decision may be delayed (e.g., to find a better match). The cost is the sum of matching distances and the introduced delays. We present the first deterministic online algorithm for this problem. Its competitive ratio is O(mlog25.5)O(m^{\log_2 5.5}) =O(m2.46) = O(m^{2.46}), where 2m2 m is the number of requests. This is polynomial in the number of metric space points if all requests are given at different points. In particular, the bound does not depend on other parameters of the metric, such as its aspect ratio. Unlike previous (randomized) solutions for the MPMD problem, our algorithm does not need to know the metric space in advance

    An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci

    Full text link
    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models. A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance. Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded introductory and discussion sections, added corollaries, new results on modifier polymorphisms, minor corrections. 49 pages, 64 reference

    Aging in the random energy model

    Get PDF
    In this letter we announce rigorous results on the phenomenon of aging in the Glauber dynamics of the random energy model and their relation to Bouchaud's 'REM-like' trap model. We show that, below the critical temperature, if we consider a time-scale that diverges with the system size in such a way that equilibrium is almost, but not quite reached on that scale, a suitably defined autocorrelation function has the same asymptotic behaviour than its analog in the trap model.Comment: 4pp, P

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Universality of weak selection

    Full text link
    Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting case in evolutionary biology. Recently it has been introduced into evolutionary game theory. In evolutionary game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection. In many models of both unstructured and structured populations, a key assumption allowing analytical calculations is weak selection, which means that all individuals perform approximately equally well. In the weak selection limit many different microscopic evolutionary models have the same or similar properties. How universal is weak selection for those microscopic evolutionary processes? We answer this question by investigating the fixation probability and the average fixation time not only up to linear, but also up to higher orders in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection intensity. With this, we can identify specific models which violate (linear) weak selection results, such as the one--third rule of coordination games in finite but large populations.Comment: 12 pages, 3 figures, accepted for publication in Physical Review
    corecore