52 research outputs found

    "ERGO-Train" : Heimprogramm-App nach distaler Radiusfraktur. Ergotherapie & Informatik Hand in Hand

    Get PDF

    Cooperative Binding

    Get PDF
    Molecular binding is an interaction between molecules that results in a stable association between those molecules. Cooperative binding occurs if the number of binding sites of a macromolecule that are occupied by a specific type of ligand is a nonlinear function of this ligand’s concentration. This can be due, for instance, to an affinity for the ligand that depends on the amount of ligand bound. Cooperativity can be positive (supralinear) or negative (infralinear). Cooperative binding is most often observed in proteins, but nucleic acids can also exhibit cooperative binding, for instance of transcription factors. Cooperative binding has been shown to be the mechanism underlying a large range of biochemical and physiological processes

    Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures

    Get PDF
    With few exceptions, current methods for short read mapping make use of simple seed heuristics to speed up the search. Most of the underlying matching models neglect the necessity to allow not only mismatches, but also insertions and deletions. Current evaluations indicate, however, that very different error models apply to the novel high-throughput sequencing methods. While the most frequent error-type in Illumina reads are mismatches, reads produced by 454's GS FLX predominantly contain insertions and deletions (indels). Even though 454 sequencers are able to produce longer reads, the method is frequently applied to small RNA (miRNA and siRNA) sequencing. Fast and accurate matching in particular of short reads with diverse errors is therefore a pressing practical problem. We introduce a matching model for short reads that can, besides mismatches, also cope with indels. It addresses different error models. For example, it can handle the problem of leading and trailing contaminations caused by primers and poly-A tails in transcriptomics or the length-dependent increase of error rates. In these contexts, it thus simplifies the tedious and error-prone trimming step. For efficient searches, our method utilizes index structures in the form of enhanced suffix arrays. In a comparison with current methods for short read mapping, the presented approach shows significantly increased performance not only for 454 reads, but also for Illumina reads. Our approach is implemented in the software segemehl available at http://www.bioinf.uni-leipzig.de/Software/segemehl/

    Local sequence alignments statistics: deviations from Gumbel statistics in the rare-event tail

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal score for ungapped local alignments of infinitely long random sequences is known to follow a Gumbel extreme value distribution. Less is known about the important case, where gaps are allowed. For this case, the distribution is only known empirically in the high-probability region, which is biologically less relevant.</p> <p>Results</p> <p>We provide a method to obtain numerically the biologically relevant rare-event tail of the distribution. The method, which has been outlined in an earlier work, is based on generating the sequences with a parametrized probability distribution, which is biased with respect to the original biological one, in the framework of Metropolis Coupled Markov Chain Monte Carlo. Here, we first present the approach in detail and evaluate the convergence of the algorithm by considering a simple test case. In the earlier work, the method was just applied to one single example case. Therefore, we consider here a large set of parameters:</p> <p>We study the distributions for protein alignment with different substitution matrices (BLOSUM62 and PAM250) and affine gap costs with different parameter values. In the logarithmic phase (large gap costs) it was previously assumed that the Gumbel form still holds, hence the Gumbel distribution is usually used when evaluating p-values in databases. Here we show that for all cases, provided that the sequences are not too long (<it>L </it>> 400), a "modified" Gumbel distribution, i.e. a Gumbel distribution with an additional Gaussian factor is suitable to describe the data. We also provide a "scaling analysis" of the parameters used in the modified Gumbel distribution. Furthermore, via a comparison with BLAST parameters, we show that significance estimations change considerably when using the true distributions as presented here. Finally, we study also the distribution of the sum statistics of the <it>k </it>best alignments.</p> <p>Conclusion</p> <p>Our results show that the statistics of gapped and ungapped local alignments deviates significantly from Gumbel in the rare-event tail. We provide a Gaussian correction to the distribution and an analysis of its scaling behavior for several different scoring parameter sets, which are commonly used to search protein data bases. The case of sum statistics of <it>k </it>best alignments is included.</p
    corecore