1,625 research outputs found
On the differences between bubble-mediated air-water transfer in freshwater and seawater
Bubble populations and gas transfer velocities were measured in cleaned and surfactant-influenced freshwater and seawater. A nonlinear fitting technique was used to partition the total gas transfer velocity for a gas in each water type into a turbulence- and bubble-mediated fraction. This showed that the bubble-mediated transfer fraction was larger in cleaned freshwater than in cleaned seawater and that the difference was a function of diffusivity and solubility. This was explained by the fact that the bubble measurements showed that bubble plumes in cleaned freshwater had a higher concentration of large bubbles and a lower concentration of small bubbles than the plumes in cleaned seawater. The differences between the behavior of the bubble-mediated gas flux in cleaned freshwater and cleaned seawater show that caution should be used when intercomparing laboratory results from measurements made in different media. These differences also will make parameterizations of bubble-mediated gas exchange developed using freshwater laboratory data difficult to apply directly to oceanic conditions. It was found that adding a surfactant to seawater had minimal impact on the concentration of bubbles in the plumes. Because surfactants decrease the gas flux to the individual bubbles, the similarity in bubble population meant that the addition of surfactant to seawater decreased the bubble-mediated gas flux compared to the flux in cleaned seawater. In contrast, the addition of a surfactant to freshwater increased the concentration of bubbles by over an order of magnitude. This increase in bubble population was large enough to offset the decrease in the flux to the individual bubbles so that the net bubble-mediated gas flux in freshwater increased when surfactant was added. This difference in behavior of the bubble population and bubble-mediated transfer velocity between surfactant-influenced and cleaned waters further complicates interrelating laboratory measurements and applying laboratory results to the ocean
Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice
Genes influencing body weight and composition and serum concentrations of leptin, insulin, and insulin-like growth factor I (IGF-I) in nonfasting animals were mapped in an intercross of the extreme high-growth mouse line DU6i and the inbred line DBA/2. Significant loci with major effects (F > 7.07) for body weight, obesity, and muscle weight were found on chromosomes 1, 4, 5, 7, 11, 12, 13, and 17, for leptin on chromosome 14, for insulin on chromosome 4, and for IGF-I on chromosome 10 at the Igf1 gene locus itself and on chromosome 18. Significant interaction between different quantitative trait loci (QTL) positions was observed (P < 0.01). Evidence was found that loci having small direct effect on growth or obesity contribute to the obese phenotype by gene–gene interaction. The effects of QTLs, epistasis, and pleiotropy account for 64% and 63% of the phenotypic variance of body weight and fat accumulation and for over 32% of muscle weight and serum concentrations of leptin, and IGF-I in the F2 population of DU6i x DBA/2 mice. [The quantitative trait loci described in this paper have been submitted to the Mouse Genome Database.
Coupled-resonator optical waveguides: Q-factor and disorder influence
Coupled resonator optical waveguides (CROW) can significantly reduce light
propagation pulse velocity due to pronounced dispersion properties. A number of
interesting applications have been proposed to benefit from such slow-light
propagation. Unfortunately, the inevitable presence of disorder, imperfections,
and a finite Q value may heavily affect the otherwise attractive properties of
CROWs. We show how finite a Q factor limits the maximum attainable group delay
time; the group index is limited by Q, but equally important the feasible
device length is itself also limited by damping resulting from a finite Q.
Adding the additional effects of disorder to this picture, limitations become
even more severe due to destructive interference phenomena, eventually in the
form of Anderson localization. Simple analytical considerations demonstrate
that the maximum attainable delay time in CROWs is limited by the intrinsic
photon lifetime of a single resonator.Comment: Accepted for Opt. Quant. Electro
The Highest Energy Neutrinos
Measurements of the arrival directions of cosmic rays have not revealed their
sources. High energy neutrino telescopes attempt to resolve the problem by
detecting neutrinos whose directions are not scrambled by magnetic fields. The
key issue is whether the neutrino flux produced in cosmic ray accelerators is
detectable. It is believed that the answer is affirmative, both for the
galactic and extragalactic sources, provided the detector has kilometer-scale
dimensions. We revisit the case for kilometer-scale neutrino detectors in a
model-independent way by focussing on the energetics of the sources. The real
breakthrough though has not been on the theory but on the technology front: the
considerable technical hurdles to build such detectors have been overcome.
Where extragalactic cosmic rays are concerned an alternative method to probe
the accelerators consists in studying the arrival directions of neutrinos
produced in interactions with the microwave background near the source, i.e.
within a GZK radius. Their flux is calculable within large ambiguities but, in
any case, low. It is therefore likely that detectors that are larger yet by
several orders of magnitudes are required. These exploit novel techniques, such
as detecting the secondary radiation at radio wavelengths emitted by neutrino
induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included.
Highlight talk presented at the 30th International Cosmic Ray Conference,
Merida, Mexico, 200
Global Optimization by Energy Landscape Paving
We introduce a novel heuristic global optimization method, energy landscape
paving (ELP), which combines core ideas from energy surface deformation and
tabu search. In appropriate limits, ELP reduces to existing techniques. The
approach is very general and flexible and is illustrated here on two protein
folding problems. For these examples, the technique gives faster convergence to
the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray
bursts (GRBs) in the data set collected by the Testbed station of the Askaryan
Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no
events that survive our cuts, which is consistent with 0.12 expected background
events. Using NeuCosmA as a numerical GRB reference emission model, we estimate
upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from
to GeV. This is the first limit on the prompt UHE GRB
neutrino quasi-diffuse flux above GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole
We report on studies of the viability and sensitivity of the Askaryan Radio
Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy
neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at
the South Pole. An initial prototype ARA detector system was installed in
January 2011, and has been operating continuously since then. We report on
studies of the background radio noise levels, the radio clarity of the ice, and
the estimated sensitivity of the planned ARA array given these results, based
on the first five months of operation. Anthropogenic radio interference in the
vicinity of the South Pole currently leads to a few-percent loss of data, but
no overall effect on the background noise levels, which are dominated by the
thermal noise floor of the cold polar ice, and galactic noise at lower
frequencies. We have also successfully detected signals originating from a 2.5
km deep impulse generator at a distance of over 3 km from our prototype
detector, confirming prior estimates of kilometer-scale attenuation lengths for
cold polar ice. These are also the first such measurements for propagation over
such large slant distances in ice. Based on these data, ARA-37, the 200 km^2
array now under construction, will achieve the highest sensitivity of any
planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation
length analysis; for submission to Astroparticle Physic
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array
The Askaryan Radio Array (ARA) is an ultra-high energy ( eV) cosmic
neutrino detector in phased construction near the South Pole. ARA searches for
radio Cherenkov emission from particle cascades induced by neutrino
interactions in the ice using radio frequency antennas ( MHz)
deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA
Testbed station was deployed at m depth in the 2010-2011 season and
the first three full ARA stations were deployed in the 2011-2012 and 2012-2013
seasons. We present the first neutrino search with ARA using data taken in 2011
and 2012 with the ARA Testbed and the resulting constraints on the neutrino
flux from eV.Comment: 26 pages, 15 figures. Since first revision, added section on
systematic uncertainties, updated limits and uncertainty band with
improvements to simulation, added appendix describing ray tracing algorithm.
Final revision includes a section on cosmic ray backgrounds. Published in
Astropart. Phys.
- …