10 research outputs found

    Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device

    No full text
    In order to utilize the high strength (ultimate tensile strength = 3 GPa) [Saito et al., Biomacromolecules, 2012, 14, 248] and stiffness (Young's modulus = 130 GPa) [Sakurada et al., J. Polym. Sci., 1962, 57, 651] of cellulose nanofibrils in a macroscopic material or composite, the structure of the elongated fibrils in the material must be controlled. Here, cellulose nanofibrils in a dispersed state are partly aligned in a flow focusing device, whereafter the anisotropic nano-structure is locked by a dispersion–gel transition. The alignment process has been studied by Håkansson et al., [Nat. Commun., 2014, 5, 4018], however, the location of the phase transition as well as at which alignment (anisotropy) the fibrils were locked was not investigated. In this study, the degree of alignment is determined with small angle X-ray scattering experiments and the location of the phase change is measured with polarized light experiments. Furthermore, the anisotropy of the hydrogel thread is determined and the thread is seen to still be anisotropic after six months in a water bath

    Nanofibril Alignment in Flow Focusing: Measurements and Calculations

    No full text
    Alignment of anisotropic supermolecular building blocks is crucial to control the properties of many novel materials. In this study, the alignment process of cellulose nanofibrils (CNFs) in a flow-focusing channel has been investigated using small-angle X-ray scattering (SAXS) and modeled using the Smoluchowski equation, which requires a known flow field as input. This flow field was investigated experimentally using microparticle-tracking velocimetry and by numerically applying the two-fluid level set method. A semidilute dispersion of CNFs was modeled as a continuous phase, with a higher viscosity as compared to that of water. Furthermore, implementation of the Smoluchowski equation also needed the rotational Brownian diffusion coefficient, which was experimentally determined in a shear viscosity measurement. The order of the nanofibrils was found to increase during extension in the flow-focusing channel, after which rotational diffusion acted on the orientation distribution, driving the orientation of the fibrils toward isotropy. The main features of the alignment and dealignment processes were well predicted by the numerical model, but the model overpredicted the alignment at higher rates of extension. The apparent rotational diffusion coefficient was seen to increase steeply as the degree of alignment increased. Thus, the combination of SAXS measurements and modeling provides the necessary framework for quantified studies of hydrodynamic alignment, followed by relaxation toward isotropy

    Ultrastrong and Bioactive Nanostructured Bio-Based Composites

    No full text
    Nature’s design of functional materials relies on smart combinations of simple components to achieve desired properties. Silk and cellulose are two clever examples from nature−spider silk being tough due to high extensibility, whereas cellulose possesses unparalleled strength and stiffness among natural materials. Unfortunately, silk proteins cannot be obtained in large quantities from spiders, and recombinant production processes are so far rather expensive. We have therefore combined small amounts of functionalized recombinant spider silk proteins with the most abundant structuralcomponent on Earth (cellulose nanofibrils (CNFs)) to fabricate isotropic as well as anisotropic hierarchical structures.Our approach for the fabrication of bio-based anisotropic fibers results in previously unreached but highly desirable mechanical performance with a stiff ness of ∼ 55 GPa, strength at break of ∼ 1015 MPa, and toughness of ∼ 55 MJ m3^{−3}. We also show that addition of small amounts of silk fusion proteins to CNF results in materials with advanced biofunctionalities, which cannot be anticipated for the wood-based CNF alone.These findings suggest that bio-based materials provide abundant opportunities to design composites with high strengthand functionalities and bring down our dependence on fossil-based resources

    Printable carbon-based supercapacitors reinforced with cellulose and conductive polymers

    No full text
    Sustainable electrical energy storage is one of the most important scientific endeavors of this century. Battery and supercapacitor technologies are here crucial, but typically the current state of the art suffers from either lack of large-scale production possibilities, sustainability or insufficient performance and hence cannot match growing demands in society. Paper and cellulosic materials are mature scalable templates for industrial roll-to-roll production. Organic materials, such as conducting polymers, and carbon derivatives are materials that can be synthesized or derived from abundant sources. Here, we report the combination of cellulose, PEDOT:PSS and carbon derivatives for bulk supercapacitor electrodes adapted for printed electronics. Cellulose provides a mesoscopic mesh for the organization of the active ingredients. Furthermore, the PEDOT:PSS in combination with carbon provides superior device characteristics when comparing to the previously standard combination of activated carbon and carbon black. PEDOT:PSS acts as a mixed ion-electron conducting glue, which physically binds activated carbon particles together, while at the same time facilitating swift transport of both electrons and ions. A surprisingly small amount (10%) of PEDOT:PSS is needed to achieve an optimal performance. This work shows that cellulose added to PEDOT:PSS-carbon enables high-performing, mechanically stable, printed super capacitor electrodes using a combination of printing methods.Funding Agencies|Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [GMT14-0058]</p

    Manufacturing Poly(3,4-Ethylenedioxythiophene) Electrocatalytic Sheets for Large-Scale H2O2 Production

    No full text
    Producing thick films of conducting polymers by a low-cost manufacturing technique would enable new applications. However, removing huge solvent volume from diluted suspension or dispersion (1-3 wt%) in which conducting polymers are typically obtained is a true manufacturing challenge. In this work, a procedure is proposed to quickly remove water from the conducting polymer poly(3,4-ethylenedioxythiophene:poly(4-styrene sulfonate) (PEDOT:PSS) suspension. The PEDOT:PSS suspension is first flocculated with 1 m H2SO4 transforming PEDOT nanoparticles (approximate to 50-500 nm) into soft microparticles. A filtration process inspired by pulp dewatering in a paper machine on a wire mesh with apertures dimension between 60 mu m and 0.5 mm leads to thick free-standing films (approximate to 0.5 mm). Wire mesh clogging that hinders dewatering (known as dead-end filtration) is overcome by adding to the flocculated PEDOT: PSS dispersion carbon fibers that aggregate and form efficient water channels. Moreover, this enables fast formation of thick layers under simple atmospheric pressure filtration, thus making the process truly scalable. Thick freestanding PEDOT films thus obtained are used as electrocatalysts for efficient reduction of oxygen to hydrogen peroxide, a promising green chemical and fuel. The inhomogeneity of the films does not affect their electrochemical function.Funding Agencies: Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; Knut and Alice Wallenberg Foundation (H2O2, Cellfion); Swedish Research Council European Commission [2016-05990, VR 2019-05577]</p

    Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments

    Get PDF
    Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieve

    Some aspects of the cyto-genetics of Oenothera

    No full text

    Chromosomal interchanges in plants

    No full text
    corecore