1,513 research outputs found

    Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    Get PDF
    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially

    Tunneling between two systems of interacting chiral fermions

    Full text link
    We develop a theory of tunneling between two systems of spinless chiral fermions. This setup can be realized at the edge of a quantum Hall bilayer structure. We find that the differential conductance of such a device in the absence of interactions has an infinitely sharp peak as a function of applied voltage. Interaction between fermions results in broadening of the conductance peak. We focus on the regime of strong interactions, in which the shape of the peak manifests well defined features associated with the elementary excitations of the system.Comment: 12 page

    Physics of the Majorana-superconducting qubit hybrids

    Full text link
    Manipulation of decoupled Majorana zero modes (MZMs) could enable topologically-protected quantum computing. However, the practical realization of a large number of perfectly decoupled MZMs needed to perform nontrivial quantum computation has proven to be challenging so far. Fortunately, even a small number of imperfect MZMs can be used to qualitatively extend the behavior of standard superconducting qubits, allowing for new approaches for noise suppression, qubit manipulation and read-out. Such hybrid devices take advantage of interplay of Cooper pair tunneling, coherent single electron tunneling, and Majorana hybridization. Here we provide a qualitative understanding of this system, give analytical results for its ground state energy spanning full parameter range, and describe potential sensing applications enabled by the interplay between Majorana and Cooper pair tunneling.Comment: 13 page

    Role of the Calcium Plateau in the Neuronal Injury and Behavioral Morbidities Following Organophosphate Intoxication

    Get PDF
    Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular calcium-induced calcium release such as dantrolene, levetiracetam, and carisbamate lowered OP-SE mediated protracted calcium elevations. Given the critical role of calcium signaling in modulating behavior and cell-death mechanisms, drugs targeted at preventing the development of the calcium plateau could enhance neuroprotection, help reduce morbidity and improve outcome following survival of OP SE

    Performance of Garden Pea Genotypes in Eastern Hills of Nepal

    Full text link
    Garden pea (Pisum sativum L) is an important winter legume used as fresh vegetables and other drier food products. Despite of its importance as cash crop in many parts of Nepal, much study on various aspects for enhancing production and productivity has yet to be done. Therefore, to evaluate the production performance different genotypes of garden pea in eastern hills agro-ecological conditions present experiments were carried out consecutively for two years (2015 and 2016) at Agricultural Research Station, Pakhribas. The experiment comprised of 11 different genotypes of garden pea including a check variety Arkel. The production performance was evaluated in a completely randomized block design with three replications. The seeds were sown at 50 × 10 cm spacing during first week of October for two years. The result showed that DGP-05 genotype had earliest 104 days after sowing. The DGP-08 genotype showed 13 which were the maximum numbers of pods per plant (13), while DGP-01 showed 8 numbers of seeds as the maximum per pod. The DGP-03 genotype had the longest pod of 9.78 cm among others. The highest fresh pod yield of 18.14 t/ha was achieved from genotype DGP-09 followed by Arkel with (16.32 t/ha).Journal of Nepal Agricultural Research Council Vol.3 2017: 15-1

    Aerothermal modeling program. Phase 2, element A: Improved numerical methods for turbulent viscous recirculating flows

    Get PDF
    The objective of this effort is to develop improved numerical schemes for predicting combustor flow fields. Various candidate numerical schemes were evaluated, and promising schemes were selected for detailed assessment. The criteria for evaluation included accuracy, computational efficiency, stability, and ease of extension to multidimensions. The candidate schemes were assessed against a variety of simple one- and two-dimensional problems. These results led to the selection of the following schemes for further evaluation: flux spline schemes (linear and cubic) and controlled numerical diffusion with internal feedback (CONDIF). The incorporation of the flux spline scheme and direct solution strategy in a computer program for three-dimensional flows is in progress

    Aerothermal modeling program, phase 2

    Get PDF
    The main objective of the NASA sponsored Aerothermal Modeling Program, Phase 2--Element A, is to develop an improved numerical scheme for predicting combustor flow fields. This effort consists of the following three technical tasks. Task 1 involves the selection and evaluation of various candidate numerical techniques. Task 2 involves an in-depth evaluation of the selected numerical schemes. Task 3 involves the convection-diffusion scheme and the direct solver that will be incorporated in the NASA 3-D elliptic code (COM3S)

    NaV2O4: a Quasi-1D Metallic Antiferromagnet with Half-Metallic Chains

    Get PDF
    NaV2O4 crystals were grown under high pressure using a NaCl flux, and the crystals were characterized with X-ray diffraction, electrical resistivity, heat capacity, and magnetization. The structure of NaV2O4 consists of double chains of edge-sharing VO6 octahedra. The resistivity is highly anisotropic, with the resistivity perpendicular to the chains more than 20 times greater than that parallel to the chains. Magnetically, the intrachain interactions are ferromagnetic and the interchain interactions are antiferromagnetic; 3D antiferromagnetic order is established at 140 K. First principles electronic structure calculations indicate that the chains are half metallic. Interestingly, the case of NaV2O4 seems to be a quasi-1D analogue of what was found for half-metallic materials.Comment: 14 pages, including 4 figures and 1 table, accepted for publication in PR
    • …
    corecore